Practical Tools, Tips and Techniques
Buch, Englisch, 306 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 561 g
ISBN: 978-3-030-28693-4
Verlag: Springer International Publishing
This unique text provides engineering students and practicing professionals with a comprehensive set of practical, hands-on guidelines and dozens of step-by-step examples for performing state-of-the-art, reliable computational fluid dynamics (CFD) and turbulence modeling. Key CFD and turbulence programs are included as well. The text first reviews basic CFD theory, and then details advanced applied theories for estimating turbulence, including new algorithms created by the author. The book gives practical advice on selecting appropriate turbulence models and presents best CFD practices for modeling and generating reliable simulations. The author gathered and developed the book’s hundreds of tips, tricks, and examples over three decades of research and development at three national laboratories and at the University of New Mexico—many in print for the first time in this book. The book also places a strong emphasis on recent CFD and turbulence advancements found in the literature over the past five to 10 years. Readers can apply the author’s advice and insights whether using commercial or national laboratory software such as ANSYS Fluent, STAR-CCM, COMSOL, Flownex, SimScale, OpenFOAM, Fuego, KIVA, BIGHORN, or their own computational tools.
Applied Computational Fluid Dynamics and Turbulence Modeling is a practical, complementary companion for academic CFD textbooks and senior project courses in mechanical, civil, chemical, and nuclear engineering; senior undergraduate and graduate CFD and turbulence modeling courses; and for professionals developing commercial and research applications.
Zielgruppe
Graduate
Autoren/Hrsg.
Fachgebiete
- Wirtschaftswissenschaften Wirtschaftssektoren & Branchen Energie- & Versorgungswirtschaft Kernenergieindustrie
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Strömungslehre
- Technische Wissenschaften Energietechnik | Elektrotechnik Atomenergietechnik
- Naturwissenschaften Physik Mechanik Kontinuumsmechanik, Strömungslehre
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen
Weitere Infos & Material
1. Motivation for CFD and Turbulence Modeling.1.1 Computational Advantages over the Experimental Approach1.2 Jobs and Future Employment Trends2. Review of Basics2.1 Conservation of Mass2.2 Conservation of Momentum2.3 Conservation of Energy2.4 Turbulence Theory2.5 Turbulence Modeling2.6 The Crucial Importance of the Reynolds Number2.7 Isotropic Turbulence Decay and Applications3. Applied Theory—Practical Turbulence Estimates3.1 Integral Eddies3.2 Taylor Eddies3.3 Kolmogorov Eddies3.4 The “LIKE” Algorithm—Computing Your Own Epsilon, Turbulent Kinetic Energy, and Turbulence Kinematic Viscosity, and Reynolds Stresses3.5 Turbulence and Surface Dimpling4. Turbulence Model Selection4.1 Top RANS Turbulence Models4.2 Avoid the Standard k- Model4.3 SST vs. 2006 k-4.4 The Increasing Power of LES and DNS Modeling5. Best Practices of the CFD and Turbulence Trade5.1 Developing a Bullet-Proof Mesh5.2 Boundary Condition Recommendations5.3 RANS Modeling Recommendations5.4 LES Modeling Recommendations5.5 DNS Modeling Recommendations5.6 Miscellaneous Do’s and Don’ts of the Trade5.7 Turbulent Natural Circulation Modeling Hints5.8 Data Visualization Tips5.9 Extracting Fluctuating Properties6. Generating Reliable Simulations6.1 Verification and Validation Terminology6.2 Code Verification: Order of Accuracy, Exact Solutions, Method of Manufactured Solutions (MMS)6.3 Solution Verification: Richardson Extrapolation, Roache’s grid convergence index (GCI)6.4 Sensitivity Analysis 6.5 Model Validation




