Runde | Lectures on Amenability | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band 1774, 302 Seiten, eBook

Reihe: Lecture Notes in Mathematics

Runde Lectures on Amenability


2002
ISBN: 978-3-540-45560-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 1774, 302 Seiten, eBook

Reihe: Lecture Notes in Mathematics

ISBN: 978-3-540-45560-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



The notion of amenability has its origins in the beginnings of modern measure theory: Does a finitely additive set function exist which is invariant under a certain group action? Since the 1940s, amenability has become an important concept in abstract harmonic analysis (or rather, more generally, in the theory of semitopological semigroups). In 1972, B.E. Johnson showed that the amenability of a locally compact group G can be characterized in terms of the Hochschild cohomology of its group algebra L^1(G): this initiated the theory of amenable Banach algebras. Since then, amenability has penetrated other branches of mathematics, such as von Neumann algebras, operator spaces, and even differential geometry. Lectures onAmenability introduces second year graduate students to this fascinating area of modern mathematics and leads them to a level from where they can go on to read original papers on the subject. Numerous exercises are interspersed in the text.
Runde Lectures on Amenability jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


0 Paradoxical decompositions
0.1 The Banach-Tarski paradox
0.2 Tarski's theorem
0.3 Notes and comments

1 Amenable, locally comact groups
1.1 Invariant means on locally compact groups
1.2 Hereditary properties
1.3 Day's fixed point theorem
1.4 Representations on Hilbert space
1.5 Notes and comments

2 Amenable Banach algebras
2.1 Johnson's theorem
2.2 Virtual and approximate diagonals
2.3 Hereditary properties
2.4 Hochschild cohomology
2.5 Notes and comments

3 Exemples of amenable Banach algebras
3.1 Banach algebras of compact operators
3.2 A commutative, radical, amenable Banach algebra
3.3 Notes and comments

4 Amenability-like properties
4.1 Super-amenability
4.2 Weak amenability
4.3 Biprojectivity and biflatness
4.4 Connes-amenability
4.5 Notes and comments

5 Banach homology
5.1 Projectivity
5.2 Resolutions and Ext-groups
5.4 Flatness and injectivity
5.4 Notes and Comments

6 C* and W*-algebras
6.1 Amenable W*-algebras
6.2 Injective W*-algebras
6.3 Tensor products of C*- and W*-algebras
6.4 Semidiscrete W*-algebras
6.5 Normal, virtual diagonals
6.6 Notes and comments

7.1 Bounded approximate identities for Fourier algebras
7.2 (Non-)amenability of Fourier
7.3 Operator amenable operator Banach algebras
7.4 Operator amenability of Fourier algebras
7.5 Operator amenability of C*-algebras
7.6 Notes and comments

8 Geometry of spaces of homomorphisms
8.1 Infinite-dimensional differential geometry
8.2 Spaces of homomorphisms
8.3 Notes and Comments

Open problems

A Abstract harmonic analysis
A.1 Convolution of measures and functions
A.2 Invariant subspaces of L(infinity symbol)(G)
A.3 Regular representations on Lp(G)
A.4 Notes and comments

B.1 The algebraic tensor products
B.2 Banach space tensor products
B.2.1 The injective tensor product
B.2.2 The projective tensor product
B.3 The Hilbert space tensor product
B.4 Notes and comments

C Banach space properties
C.1 Approximation properties
C.2 The Radon-Nikokym property
C.3 Local theory of Banach spaces
C.4 Notes and comments

D Operator spaces
D.1 Abstract and concrete operator spaces
D.2 Completely bounded maps
D.3 Tensor products of operator spaces
D.4 Operator Banach algebras
D.5 Notes and comments
List of symbols
References
Index



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.