E-Book, Englisch, 439 Seiten, eBook
Samek / Montavon / Vedaldi Explainable AI: Interpreting, Explaining and Visualizing Deep Learning
Erscheinungsjahr 2019
ISBN: 978-3-030-28954-6
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 439 Seiten, eBook
Reihe: Lecture Notes in Artificial Intelligence
ISBN: 978-3-030-28954-6
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Towards Explainable Artificial Intelligence.- Transparency: Motivations and Challenges.- Interpretability in Intelligent Systems: A New Concept?.- Understanding Neural Networks via Feature Visualization: A Survey.- Interpretable Text-to-Image Synthesis with Hierarchical Semantic Layout Generation.- Unsupervised Discrete Representation Learning.- Towards Reverse-Engineering Black-Box Neural Networks.- Explanations for Attributing Deep Neural Network Predictions.- Gradient-Based Attribution Methods.- Layer-Wise Relevance Propagation: An Overview.- Explaining and Interpreting LSTMs.- Comparing the Interpretability of Deep Networks via Network Dissection.- Gradient-Based vs. Propagation-Based Explanations: An Axiomatic Comparison.- The (Un)reliability of Saliency Methods.- Visual Scene Understanding for Autonomous Driving Using Semantic Segmentation.- Understanding Patch-Based Learningof Video Data by Explaining Predictions.- Quantum-Chemical Insights from Interpretable Atomistic Neural Networks.- Interpretable Deep Learning in Drug Discovery.- Neural Hydrology: Interpreting LSTMs in Hydrology.- Feature Fallacy: Complications with Interpreting Linear Decoding Weights in fMRI.- Current Advances in Neural Decoding.- Software and Application Patterns for Explanation Methods.