E-Book, Englisch, 418 Seiten
Reihe: The Frontiers Collection
Schlosshauer Decoherence
1. Auflage 2007
ISBN: 978-3-540-35775-9
Verlag: Springer Berlin Heidelberg
Format: PDF
Kopierschutz: 1 - PDF Watermark
and the Quantum-To-Classical Transition
E-Book, Englisch, 418 Seiten
Reihe: The Frontiers Collection
ISBN: 978-3-540-35775-9
Verlag: Springer Berlin Heidelberg
Format: PDF
Kopierschutz: 1 - PDF Watermark
This detailed, accessible introduction to the field of quantum decoherence reviews the basics and then explains the essential consequences of the phenomenon for our understanding of the world. The discussion includes, among other things: How the classical world of our experience can emerge from quantum mechanics; the implications of decoherence for various interpretations of quantum mechanics; recent experiments confirming the puzzling consequences of the quantum superposition principle and making decoherence processes directly observable.
Maximilian Schlosshauer is an internationally recognized researcher in the foundations of quantum mechanics in general and in quantum decoherence in particular. After completing his undergraduate education at Freiburg University, Germany, he graduated from Lund University, Sweden, with a Master of Science degree in 2001. He received a Ph.D. degree in Physics from the University of Washington in Seattle in 2005. His postgraduate research (with Arthur Fine) was focused on decoherence and the quantum-to-classical transition. He is currently an Australian Research Council Postdoctoral Fellow in the Department of Physics at the University of Melbourne, Australia. Besides his interest in decoherence and the foundations of quantum mechanics, he has also contributed important research in theoretical biophysics.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;7
2;Contents;11
3;1 Introducing Decoherence;16
4;2 The Basic Formalism and Interpretation of Decoherence;28
4.1;2.1 The Concept and Interpretation of Quantum States;29
4.2;2.2 The Superposition Principle;35
4.3;2.3 Quantum Entanglement;43
4.4;2.4 The Concept and Interpretation of Density Matrices;48
4.5;2.5 The Measurement Problem and the Quantum- to- Classical Transition;64
4.6;2.6 Which-Path Information and Environmental Monitoring;75
4.7;2.7 Decoherence and the Local Damping of Interference;83
4.8;2.8 Environment-Induced Superselection;86
4.9;2.9 Redundant Encoding of Information in the Environment and “ Quantum Darwinism”;100
4.10;2.10 A Simple Model for Decoherence;103
4.11;2.11 Decoherence Versus Dissipation;108
4.12;2.12 Decoherence Versus Classical Noise;110
4.13;2.13 Virtual Decoherence and Quantum “Erasure”;113
4.14;2.14 Resolution into Subsystems;116
4.15;2.15 Formal Tools and Their Interpretation;118
4.16;2.16 Summary;127
5;3 Decoherence Is Everywhere: Localization Due to Environmental Scattering;130
5.1;3.1 The Scattering Model;134
5.2;3.2 Calculating the Decoherence Factor;137
5.3;3.3 Full Versus Partial Which-Path Resolution;143
5.4;3.4 Decoherence Due to Scattering of Thermal Photons and Air Molecules;147
5.5;3.5 Illustrating the Dynamics of Decoherence;154
5.6;3.6 Summary;165
6;4 Master-Equation Formulations of Decoherence;167
6.1;4.1 General Formalism;168
6.2;4.2 The Born–Markov Master Equation;169
6.3;4.3 Master Equations in the Lindblad Form;179
6.4;4.4 Non-Markovian Dynamics;183
7;5 A World of Spins and Oscillators: Canonical Models for Decoherence;185
7.1;5.1 Mapping onto Canonical Models;187
7.2;5.2 Quantum Brownian Motion;192
7.3;5.3 The Spin–Boson Model;221
7.4;5.4 Spin-Environment Models;236
7.5;5.5 Summary;251
8;6 Of Buckey Balls and SQUIDs: Observing Decoherence in Action;256
8.1;6.1 The First Milestone: Atoms in a Cavity;257
8.2;6.2 Interferometry with C70 Molecules;271
8.3;6.3 SQUIDs and Other Superconducting Qubits;283
8.4;6.4 Other Experimental Domains;295
8.5;6.5 Outlook;302
9;7 Decoherence and Quantum Computing;305
9.1;7.1 A Brief Overview of Quantum Computing;306
9.2;7.2 Decoherence Versus Controllability in Quantum Computers;313
9.3;7.3 Decoherence Versus Classical Fluctuations;314
9.4;7.4 Quantum Error Correction;316
9.5;7.5 Quantum Computation on Decoherence- Free Subspaces;333
9.6;7.6 Summary and Outlook;339
10;8 The Role of Decoherence in Interpretations of Quantum Mechanics;341
10.1;8.1 The Standard and Copenhagen Interpretations;342
10.2;8.2 Relative-State Interpretations;348
10.3;8.3 Modal Interpretations;356
10.4;8.4 Physical Collapse Theories;360
10.5;8.5 Bohmian Mechanics;366
10.6;8.6 Summary;369
11;9 Observations, the Quantum Brain, and Decoherence;371
11.1;9.1 The Role of the Observer in Quantum Mechanics;371
11.2;9.2 Quantum Observers and the Von Neumann Chain;373
11.3;9.3 Decoherence in the Brain: The Brain as a Quantum Computer?;377
11.4;9.4 “Subjective” Resolutions of the Measurement Problem;387
12;Appendix: The Interaction Picture;391
13;References;395
14;Index;420




