Schmidt-Traub / Gorak / Górak | Integrated Reaction and Separation Operations | E-Book | www.sack.de
E-Book

E-Book, Englisch, 366 Seiten

Schmidt-Traub / Gorak / Górak Integrated Reaction and Separation Operations

Modelling and experimental validation
1. Auflage 2007
ISBN: 978-3-540-30304-6
Verlag: Springer Berlin Heidelberg
Format: PDF
Kopierschutz: 1 - PDF Watermark

Modelling and experimental validation

E-Book, Englisch, 366 Seiten

ISBN: 978-3-540-30304-6
Verlag: Springer Berlin Heidelberg
Format: PDF
Kopierschutz: 1 - PDF Watermark



Economic needs as well as ecological demands are major driving forces in improving chemical processes and plants. To meet these goals processes have to be intensified in order to get products of higher quality, to increase yield by reducing or even suppressing by-products and to minimise energy consumption. A preferred principle for such intensifications is process - tegration, especially integration of reaction and separation operations. S- entific research in this field has been boosted by certain extremely succe- ful examples like the Eastman-Kodak process for methyl acetate or the MTBE process which are milestones for this method. In 2002 the German Research Foundation defined process integration as one of the major - search topics for the next decade. In 1998 the Department of Biochemical- and Chemical Engineering at the University of Dortmund decided to pool its activities for concerted - forts in process integration and to form a joint research cluster. Our interest was to find out the general challenges as well as obstacles of integrated processes and to work out methods for their design and valuation. Soon it became clear that theoretical work only cannot give reasonable answers.

Professor Dr.-Ing. Schmidt-Traub studied Chemical Engineering, first in Braunschweig then in Berlin, where he got his PhD and habilitation from the Technical University. He worked in leading positions in engineering for Krupp Koppers for 15 years. From 1989 to 2005 he held the chair of Plant Design at the University of Dortmund. He chaired Dechema as well as GVC working groups like 'Computer Applications in Chemical Engineering', 'Process and Plant Design' and 'Computer-aided Plant Engineering'. He was speaker of the Research Group ' Integrated Reaction and Separation Operations' by Deutsche Forschungsgemeinschaft (DFG). His main research activities are preparative chromatography, down stream processing, process design and plant engineering. Professor Górak graduated from Technical University of Lodz, Poland, where he also got his PhD before he joined Henkel kGaA in Düsseldorf as senior researcher. In 1992 he has got his 'venia legendi' from RWTH Aachen and was appointed for Professor at Dortmund University. In 1996 he became Chair of Fluid Separations at University Essen and four years later at Dortmund University and is also Professor at the Technical University of Lodz, Poland. He is chairman of several German Working Parties on Fluid Separation and Process Simulation, editor for a leading Journal and has published about 150 referred papers and book chapters. His scientific interests are reactive and bioreactive separation processes, process intensification, computer aided process engineering.

Schmidt-Traub / Gorak / Górak Integrated Reaction and Separation Operations jetzt bestellen!

Weitere Infos & Material


1;Preface;5
2;Corresponding Authors;8
3;Table of contents;9
4;1 Introduction;13
5;2 Synthesis of reactive separation processes;19
5.1;2.1 Introduction;19
5.2;2.2 Fundamental process synthesis concepts;20
5.3;2.3 Process synthesis strategy;29
5.3.1;2.3.1 Process goals;30
5.3.2;2.3.2 Data acquisition / thermodynamic analysis;30
5.3.3;2.3.3 Investigation of the reaction phase;31
5.3.4;2.3.4 Identification of incentives;31
5.3.5;2.3.5 Selection of the separation process;31
5.3.6;2.3.6 Knock-out criteria;33
5.3.7;2.3.7 Estimation of product regions for full integration;33
5.3.8;2.3.8 Measures to achieve the desired product quality;37
5.3.9;2.3.9 Necessity of additional steps;38
5.3.10;2.3.10 Simulation and optimization;38
5.3.11;2.3.11 Examples;39
5.4;2.4 Optimization of the process;73
5.4.1;2.4.1 The optimization model;75
5.4.2;2.4.2 Solution method;79
5.4.3;2.4.3 Examples;82
5.5;2.5 Conclusions;96
5.6;2.6 Notation;97
5.7;2.7 Literature;100
6;3 Catalytic distillation;107
6.1;3.1 Introduction;107
6.2;3.2 Basics of catalytic distillation;108
6.2.1;3.2.1 Catalyst;110
6.2.2;3.2.2 Internals;113
6.3;3.3 Modeling;115
6.3.1;3.3.1 Equilibrium stage model;117
6.3.2;3.3.2 Rate-based approach;118
6.4;3.4 Model parameters;122
6.4.1;3.4.1 Vapor-liquid equilibrium;122
6.4.2;3.4.2 Reaction kinetics;122
6.4.3;3.4.3 Hydrodynamics and mass transfer;124
6.4.4;3.4.4 Differential models;126
6.5;3.5 Case studies;127
6.5.1;3.5.1 Methyl acetate synthesis;127
6.5.2;3.5.2 Ethyl acetate synthesis;131
6.5.3;3.5.3 Ethyl acetate transesterification;135
6.5.4;3.5.4 Dimethyl carbonate transesterification;139
6.6;3.6 Conclusions;145
6.7;3.7 Notation;147
6.8;3.8 Literature;149
7;4 Reactive gas adsorption;160
7.1;4.1 Introduction;160
7.1.1;4.1.1 Gas-phase adsorptive reactors – operation and regeneration strategies;162
7.1.2;4.1.2 Comparison with related reactor concepts;164
7.2;4.2 Modeling of gas-phase adsorptive reactors;166
7.2.1;4.2.1 Model equations;166
7.2.2;4.2.2 Model implementation and numerical features;170
7.3;4.3 Design principles of adsorptive reactors;171
7.4;4.4 Conversion enhancement of equilibrium-limited reactions;172
7.4.1;4.4.1 Claus reaction;172
7.4.2;4.4.2 HCN-synthesis from CO and NH3;179
7.4.3;4.4.3 Water-gas shift reaction;183
7.5;4.5 Yield and selectivity enhancement for complex reaction schemes;183
7.5.1;4.5.1 Direct synthesis of DME from synthesis gas;184
7.5.2;4.5.2 Oxidative dehydrogenation of ethylbenzene to styrene;190
7.6;4.6 Conclusions;195
7.7;4.7 Notation;196
7.8;4.8 Literature;198
8;5 Reactive liquid chromatography;202
8.1;5.1 Introduction;202
8.2;5.2 Process concepts;203
8.2.1;5.2.1 Chromatographic batch reactor;203
8.2.2;5.2.2 Continuous annular reactor;204
8.2.3;5.2.3 Counter-current flow reactors;205
8.2.4;5.2.4 Degree of process integration;210
8.3;5.3 Modeling of simulated moving bed reactors;211
8.3.1;5.3.1 Rigorous models;213
8.3.2;5.3.2 TMBR model;219
8.3.3;5.3.3 Comparison of TMBR and SMBR;221
8.4;5.4 Experimental model validation;222
8.4.1;5.4.1 Parameter determination;222
8.4.2;5.4.2 Production of -phenethylacetate;225
8.4.3;5.4.3 Thermal racemization of Troegers Base;228
8.5;5.5 Short-cut design methods for SMB reactors;230
8.5.1;5.5.1 Reactions of type A + B C + D;231
8.5.2;5.5.2 Other types of reaction;235
8.5.3;5.5.3 Short-cut calculation for irreversible esterification;236
8.6;5.6 Design of chromatographic reactors;237
8.6.1;5.6.1 Choice of the chromatographic system;237
8.6.2;5.6.2 Model based optimization of design and operating parameters;238
8.6.3;5.6.3 Evaluation and application of chromatographic reactors;240
8.7;5.7 Notation;245
8.8;5.8 Literature;247
9;6 Reactive extraction;251
9.1;6.1 Introduction;251
9.2;6.2 Reactive extraction systems;251
9.2.1;6.2.1 Separation processes;252
9.2.2;6.2.2 Synthesis processes;253
9.3;6.3 System analysis and plant design;254
9.3.1;6.3.1 Analysis of the reaction system;256
9.4;6.4 Modelling;258
9.4.1;6.4.1 Mini-plant design;259
9.5;6.5 Experiments in the continuous mini-plant;264
9.6;6.6 Conclusions;267
9.7;6.7 Literature;268
10;7 Optimization and control of reactive chromatographic processes;269
10.1;7.1 Introduction;269
10.2;7.2 The simulated moving bed process;270
10.2.1;7.2.1 The variable column length (VARICOL) process;272
10.3;7.3 Integration of reaction and separation – the Hashimoto SMB process;273
10.4;7.4 Mathematical modelling;279
10.5;7.5 Steady state optimization of SMB processes;281
10.5.1;7.5.1 General approach;281
10.5.2;7.5.2 Examples;283
10.6;7.6 Optimization of the design of a Hashimoto SMB process;291
10.7;7.7 Control of reactive SMB processes;295
10.7.1;7.7.1 Online optimizing control;296
10.7.2;7.7.2 Parameter estimation;299
10.7.3;7.7.3 Application study – racemisation of Troeger’s Base;300
10.8;7.8 Conclusions;302
10.9;7.9 Notation;303
10.10;7.10 Literature;305
11;8 Controlling reactive distillation;308
11.1;8.1 Introduction;308
11.2;8.2 The reactive distillation column;310
11.2.1;8.2.1 Chemical preliminaries;310
11.2.2;8.2.2 The reactive distillation column;310
11.3;8.3 Control structure selection;313
11.3.1;8.3.1 Motivation;313
11.3.2;8.3.2 Degrees of freedom and measurement equipment;313
11.3.3;8.3.3 Steady-state process operability;314
11.3.4;8.3.4 Dynamic process operability;317
11.4;8.4 Model refinement by linear system identification;321
11.4.1;8.4.1 Choice of the identification signal;321
11.4.2;8.4.2 Linear model identification: Data pretreatment and regression;323
11.4.3;8.4.3 Model order reduction;324
11.5;8.5 Model uncertainty assessment;328
11.5.1;8.5.1 Model error model;329
11.5.2;8.5.2 Data-driven computation of uncertainty bounds;330
11.6;8.6 Controller design;332
11.6.1;8.6.1 Control performance specification;333
11.6.2;8.6.2 Controller reduction;337
11.7;8.7 Conclusions;343
11.8;8.8 Literature;345
12;9 Multifunctionality at particle level – Studies for adsorptive catalysts;348
12.1;9.1 Introduction;348
12.2;9.2 Integration of adsorptive functionality on particle scale;350
12.3;9.3 Test reaction scheme;353
12.4;9.4 Modeling of adsorptive catalyst;354
12.5;9.5 Results and discussion;358
12.5.1;9.5.1 Particle level integration vs. conventional particles;358
12.5.2;9.5.2 Particle level integration vs. particle structuring;359
12.5.3;9.5.3 Relevance of macro- and microstructuring;364
12.6;9.6 Conclusions;366
12.7;9.7 Literature;367
13;Index;369



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.