E-Book, Englisch, 403 Seiten
Schwartz / Kumar / Adams Electron Backscatter Diffraction in Materials Science
2. Auflage 2009
ISBN: 978-0-387-88136-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 403 Seiten
ISBN: 978-0-387-88136-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Electron backscatter diffraction is a very powerful and relatively new materials characterization technique aimed at the determination of crystallographic texture, grain boundary character distributions, lattice strain, phase identification, and much more. The purpose of this book is to provide the fundamental basis for electron backscatter diffraction in materials science, the current state of both hardware and software, and illustrative examples of the applications of electron backscatter diffraction to a wide-range of materials including undeformed and deformed metals and alloys, ceramics, and superconductors. The text has been substantially revised from the first edition, and the authors have kept the format as close as possible to the first edition text. The new developments covered in this book include a more comphrensive coverage of the fundamentals not covered in the first edition or other books in the field, the advances in hardware and software since the first edition was published, and current examples of application of electron backscatter diffraction to solve challenging problems in materials science and condensed-matter physics.
Adam J. Schwartz is the Deputy Division Leader for Condensed Matter and High Pressure Physics in the Physics and Advanced Technologies Directorate. Dr. Schwartz joined LLNL as a post-doctoral research associate to investigate the systematics of displacive phase transformations after receiving his PhD from the University of Pittsburgh in 1991. His areas of interests focus on structure-propoerty-processing relations, aging and phase transformations in actinides; influence of microstructure and impurities on high-strain rate deformation behavior, texture and texture gradients in materials, intercrystalline defects and the role of grain boundary character distribution in materials, conventional and high resolution transmission electron microscopy, and electron backscatter diffraction. Dr. Schwartz has authored over 50 publications and has one patent. Mukul Kumar joined as a staff scientist in the Materials Science and Technology Division in 1998 after completing a stint as a post-doctoral fellow at Johns Hopkins University. Prior to that, he received his PhD from the University of Cincinnati, where he was an Oak Ridge Institute for Science and Engineering Fellow and also received the ASM International Arthur Focke Award for his dissertation work. His areas of interest include the relationship between properties and microstructures, particularly as related to extreme environments encountered in turbine jet engine and nuclear reactor environments and high strain rate and pressure conditions; defect analysis using conventional transmission electron microscopy; and electron backscatter diffraction. Kumar has authored over 70 publications and has two patents.
Autoren/Hrsg.
Weitere Infos & Material
1;Contents;5
2;Contributors;14
3;1 Present State of Electron Backscatter Diffraction and Prospective Developments;22
3.1;1.1 Introduction;22
3.2;1.2 Generation and Interpretation of Electron Backscatter Diffraction Patterns;23
3.3;1.3 Experimental Set-Up of an EBSD System;24
3.4;1.4 The Components of an Automated EBSD System;25
3.4.1;1.4.1 The Pattern Acquisition Device;25
3.4.2;1.4.2 Mechanical Stage and Digital Beam Scanning;26
3.5;1.5 Spatial Resolution;28
3.6;1.6 SEM Specifications for Good EBSD Performance;30
3.7;1.7 The Radon or Hough Transformation for Band Localization;31
3.8;1.8 Indexing indexing ;33
3.9;1.9 Fast EBSD Fast EBSD ;34
3.10;1.10 Ion Blocking Patterns;36
3.11;1.11 Conclusions;40
3.12;References;40
4;2 Dynamical Simulation of Electron Backscatter Diffraction Patterns;42
4.1;2.1 Introduction;42
4.2;2.2 Model of Electron Backscatter Diffraction;42
4.3;2.3 Dynamical Electron Diffraction in EBSD;43
4.3.1;2.3.1 Using the Reciprocity Principle;43
4.3.2;2.3.2 Bloch Wave Formalism;44
4.3.3;2.3.3 Inclusion of the Backscattering Process;45
4.4;2.4 Applications;46
4.4.1;2.4.1 A Real-Space View of EBSD;46
4.4.2;2.4.2 Full Scale Simulation of EBSD Patterns;48
4.4.3;2.4.3 The Influence of the Energy Spectrum of the Backscattered Electrons;49
4.4.4;2.4.4 Dynamical Effects of Anisotropic Backscattering;51
4.5;2.5 Summary;53
4.6;References;53
5;3 Representations of Texture;55
5.1;3.1 Introduction;55
5.2;3.2 Rotations and Orientations;56
5.2.1;3.2.1 Defining a Rotation;56
5.2.2;3.2.2 Defining an Orientation;57
5.3;3.3 Pole Figures;58
5.4;3.4 Discrete Orientations;60
5.4.1;3.4.1 Axis-Angle Parameters;61
5.4.2;3.4.2 Rodrigues Vectors;62
5.4.3;3.4.3 Quaternions;62
5.4.4;3.4.4 Euler Angles;65
5.5;3.5 Orientation Distribution Functions;66
5.5.1;3.5.1 Circular Harmonics;66
5.5.2;3.5.2 Spherical Harmonics;67
5.5.3;3.5.3 Hyperspherical Harmonics;68
5.5.4;3.5.4 Generalized Spherical Harmonics;69
5.5.5;3.5.5 Symmetrized Harmonics;69
5.6;3.6 Conclusion;70
5.7;References;71
6;4 Energy Filtering in EBSD;72
6.1;4.1 Introduction;72
6.2;4.2 Background;72
6.3;4.3 Energy Filters;73
6.4;4.4 Operating the Filter;75
6.5;4.5 Early Results;76
6.6;4.6 Patterns at Different Energies;79
6.7;4.7 Localization of the Signal;80
6.8;4.8 Future Energy Filters in EBSD;81
6.9;4.9 Summary and Conclusions;81
6.10;References;82
7;5 Spherical Kikuchi Maps and Other Rarities;83
7.1;5.1 Introduction;83
7.2;5.2 Electron Backscatter Patterns;83
7.3;5.3 Spherical Kikuchi Maps;83
7.4;5.4 EBSP Detectors;83
7.5;5.5 EBSP Imaging and Uniformity;86
7.6;5.6 EBSP Simulation;86
7.7;5.7 Spherical Kikuchi Maps from EBSPs;86
7.8;5.8 Kikuchi Band Profiles;90
7.9;5.9 Spherical Kikuchi Map Inversion;92
7.10;5.10 Uses for Spherical Kikuchi Maps;93
7.11;5.11 Colour Orientation Contrast Images;94
7.12;5.12 STEM in the SEM;94
7.13;5.13 Unusual Features in EBSPs;95
7.14;References;97
8;6 Application of Electron Backscatter Diffraction to Phase Identification;99
8.1;6.1 Introduction;99
8.2;6.2 Considerations for Phase ID with EBSD;100
8.3;6.3 Case Studies;102
8.3.1;6.3.1 Simultaneous EBSD/EDS Phase Discrimination;103
8.3.2;6.3.2 Distinguishing ' and '' in Ni Superalloys;104
8.3.3;6.3.3 Volume Fraction Determination in a Multiphase Alloy;107
8.4;References;112
9;7 Phase Identification Through Symmetry Determination in EBSD Patterns;114
9.1;7.1 Introduction;114
9.2;7.2 Basis of the Phase Identification Method;114
9.3;7.3 Determination of the Crystal Unit Cell;115
9.4;7.4 Discovering the Lattice Symmetry;117
9.5;7.5 Re-Indexing the Pattern According to the Discovered Crystal Class;118
9.6;7.6 Examples;119
9.6.1;7.6.1 Case 1, A Cubic Crystal;119
9.6.2;7.6.2 Case 2, A Hexagonal Crystal;121
9.6.3;7.6.3 Case 3, A Trigonal Crystal;121
9.7;7.7 Discussion;123
9.8;References;124
10;8 Three-Dimensional Orientation Microscopy by Serial Sectioning and EBSD-Based Orientation Mappingin a FIB-SEM;125
10.1;8.1 Introduction;125
10.2;8.2 The Geometrical Set-Up for 3D Characterisation in a FIB-SEM;126
10.3;8.3 Automatic 3D Orientation Microscopy;129
10.4;8.4 Software for 3D Data Analysis;129
10.5;8.5 Application Examples;130
10.5.1;8.5.1 The 3D Microstructure and Crystallography of Pearlite Colonies;130
10.5.2;8.5.2 Microstructure of ''Nanocrystalline'' NiCo Deposits;131
10.6;8.6 Discussion;135
10.6.1;8.6.1 Accuracy and Application Limits;135
10.6.2;8.6.2 Materials Issues;136
10.7;8.7 Conclusions;136
10.8;References;137
11;9 Collection, Processing, and Analysis of Three-Dimensional EBSD Data Sets;139
11.1;9.1 Introduction;139
11.2;9.2 Data Collection;139
11.3;9.3 Processing Strategies;140
11.3.1;9.3.1 Registration and Alignment of Sections;140
11.3.2;9.3.2 Segmentation of Grains;142
11.3.3;9.3.3 Clean-Up Routines;143
11.3.3.1;9.3.3.1 Filtering of Low Quality Data;143
11.3.3.2;9.3.3.2 Removal of Small Grains;145
11.3.3.3;9.3.3.3 Additional Data Processing Possibilities;145
11.4;9.4 Analysis Capabilities;145
11.4.1;9.4.1 Morphological Descriptors;145
11.4.1.1;9.4.1.1 Grain Size and Volume;145
11.4.1.2;9.4.1.2 Grain Shape;146
11.4.1.3;9.4.1.3 Number of Neighbors;147
11.4.1.4;9.4.1.4 Correlations Between Parameters;148
11.4.2;9.4.2 Crystallographic Descriptors;149
11.4.2.1;9.4.2.1 Classical Measurements;149
11.4.2.2;9.4.2.2 Fundamentally 3D Measurements;150
11.5;9.5 Summary;151
11.6;References;152
12;10 3D Reconstruction of Digital Microstructures;154
12.1;10.1 Motivation;154
12.2;10.2 Background;154
12.2.1;10.2.1 2D--3D Inference;154
12.2.2;10.2.2 3D Polycrystal Microstructure Generation;155
12.3;10.3 Data Collection and Analysis;155
12.3.1;10.3.1 Data Sources;155
12.3.2;10.3.2 Identifying Features;156
12.3.3;10.3.3 Statistical Description of Features;156
12.4;10.4 Methods for 3D Structure Inference;156
12.4.1;10.4.1 Monte Carlo-Based Histogram Fitting;158
12.4.2;10.4.2 Observation-Based Domain Constraint;160
12.5;10.5 Generation of 3D Structure;161
12.5.1;10.5.1 Packing of Ellipsoids;162
12.5.2;10.5.2 Relaxation of Boundaries;164
12.6;10.6 Quality Analysis;164
12.6.1;10.6.1 Size Distribution Comparison;164
12.6.2;10.6.2 Shape Distribution Comparison;164
12.6.3;10.6.3 Neighborhood Comparison;166
12.6.4;10.6.4 Boundary Structure Comparison;166
12.7;10.7 Thoughts on Current Conditions and Future Work;166
12.8;References;167
13;11 Direct 3D Simulation of Plastic Flow from EBSD Data;169
13.1;11.1 Introduction;169
13.2;11.2 Material and Microstructural Model;170
13.2.1;11.2.1 Three-Dimensional Microstructure Generation;171
13.2.2;11.2.2 Micromechanical Model;172
13.2.3;11.2.3 Finite Element Model;173
13.3;11.3 Simulation Results;173
13.4;11.4 Directions for Further Computational Development;176
13.5;11.5 Conclusions;179
13.6;References;180
14;12 First-Order Microstructure Sensitive Design Based on Volume Fractions and Elementary Bounds;182
14.1;12.1 Introduction;182
14.2;12.2 Quantification of Microstructure;183
14.3;12.3 Microstructure Sensitive Design Framework;183
14.4;12.4 Property Closures;185
14.5;References;188
15;13 Second-Order Microstructure Sensitive Design Using 2-Point Spatial Correlations;189
15.1;13.1 Introduction;189
15.2;13.2 Definition and Properties of the 2-Point Correlation Functions;190
15.2.1;13.2.1 Boundary Conditions;191
15.2.2;13.2.2 Properties of the 2-Point Functions;191
15.2.3;13.2.3 Visualization of the 2-Point Functions;191
15.2.4;13.2.4 Metrics from 2-Point Correlations;192
15.2.5;13.2.5 Collecting 2-Point Correlations from Material Samples;192
15.3;13.3 Structure Property Relations;193
15.3.1;13.3.1 Localization Tensors;194
15.3.1.1;13.3.1.1 Spectral Form;195
15.3.1.2;13.3.1.2 Calibration Techniques;195
15.3.2;13.3.2 Effective Tensors;196
15.4;13.4 Microstructure Design;198
15.5;References;199
16;14 Combinatorial Materials Science and EBSD: A High Throughput Experimentation Tool;201
16.1;14.1 Introduction;201
16.2;14.2 Introduction to Combinatorial Methods;201
16.2.1;14.2.1 High Throughput EBSD Screening;202
16.2.1.1;14.2.1.1 Analysis of Chemical Libraries;202
16.2.1.2;14.2.1.2 Microstructural Gradients;205
16.2.2;14.2.2 Informatics and Data;206
16.3;14.3 Summary;208
16.4;References;210
17;15 Grain Boundary Networks;212
17.1;15.1 Introduction;212
17.2;15.2 Measurement and Classification of Local Network Elements;213
17.2.1;15.2.1 General Definitions for Single Boundaries;213
17.2.2;15.2.2 Structures with More than One Boundary;214
17.3;15.3 Geometry of the Network Structure;215
17.3.1;15.3.1 Percolation Measures of the Grain Boundary Network;216
17.3.2;15.3.2 Crystallographic Constraints;217
17.4;15.4 Microstructure-Property Connections;219
17.4.1;15.4.1 Composite Averaging vs. Percolation Theory;220
17.4.2;15.4.2 Crystallographic Correlations;222
17.5;15.5 Conclusions and Future Outlook;222
17.6;References;224
18;16 Measurement of the Five-Parameter Grain Boundary Distribution from Planar Sections;226
18.1;16.1 Introduction: Grain Boundary Planes and Properties;226
18.2;16.2 Serial Sectioning;227
18.3;16.3 Single-Surface Trace Analysis;227
18.4;16.4 Five-Parameter Stereological Analysis;229
18.4.1;16.4.1 Parameterization and Discretization of the Space of Grain Boundary Types;229
18.4.2;16.4.2 Measurement of the Grain Boundary Characterization Distribution;230
18.4.3;16.4.3 Performance of the Stereological Analysis;232
18.4.4;16.4.4 Comparison GBCDs Measured Stereologically and by Serial Sectioning in the Dual Beam FIB;234
18.5;16.5 Examples of Five-Parameter Analyses;235
18.6;References;239
19;17 Strain Mapping Using Electron Backscatter Diffraction;241
19.1;17.1 Introduction;241
19.1.1;17.1.1 The Need for Local Strain Assessment;241
19.1.2;17.1.2 Competing Strain Mapping Techniques;241
19.1.3;17.1.3 Review of Applications of EBSD to Analysis of Elastic Strains;242
19.2;17.2 Cross-Correlation-Based Analysis of EBSD Patterns;244
19.2.1;17.2.1 Geometry: Linking Pattern Shifts to Strain;244
19.2.2;17.2.2 Pattern Shift Measurement;245
19.2.3;17.2.3 Sensitivity Analysis;247
19.2.4;17.2.4 Illustrative Applications;249
19.3;17.3 Concluding Remarks;257
19.4;References;257
20;18 Mapping and Assessing Plastic Deformation Using EBSD;260
20.1;18.1 Plastic Deformation Effects on the EBSD Pattern and Orientation Map;260
20.2;18.2 Pattern Rotation Approaches;262
20.2.1;18.2.1 Mapping Orientations and Misorientations;262
20.2.2;18.2.2 Average Misorientation Approaches;264
20.2.3;18.2.3 Measurement and Calculation of GND Densities;267
20.3;References;271
21;19 Analysis of Deformation Structures in FCC Materials Using EBSD and TEM Techniques;272
21.1;19.1 Introduction;272
21.2;19.2 Orientation Noise in EBSD Data;273
21.2.1;19.2.1 A Quantitative Description of Orientation Noise;274
21.2.2;19.2.2 Postprocessing Orientation Filtering Operations;275
21.3;19.3 Quantitative TEMEBSD Comparison;277
21.4;19.4 Heterogeneity in Microstructural Refinement;279
21.4.1;19.4.1 Analysis of Local Heterogeneity;280
21.4.2;19.4.2 Potential for Analysis of Large-Scale Heterogeneities;281
21.5;19.5 Summary and Conclusions;282
21.6;References;283
22;20 Application of EBSD Methods to Severe Plastic Deformation (SPD) and Related Processing Methods;285
22.1;20.1 Introduction;285
22.2;20.2 Microstructures During the Initial ECAP Pass;286
22.3;20.3 Microstructures Developed by Machining;290
22.4;20.4 Grain Refinement During FSP;292
22.5;20.5 Conclusions;296
22.6;References;296
23;21 Applications of EBSD to Microstructural Control in Friction Stir Welding/Processing;298
23.1;21.1 Introduction;298
23.2;21.2 Brief Explanations of FSW/P Terminology;299
23.3;21.3 Microstructural Evolution;299
23.4;21.4 Material Flow;303
23.5;21.5 Structure-Properties Relationship;305
23.6;21.6 Summary and Future Outlook;306
23.7;References;306
24;22 Characterization of Shear Localization and Shock Damage with EBSD;308
24.1;22.1 Introduction;308
24.2;22.2 Shear Localization;309
24.2.1;22.2.1 Constrained Shear in Pure Fe---Shear Zone Geometry;309
24.2.2;22.2.2 Constrained Shear in Pure Fe---Texture Development;313
24.2.3;22.2.3 Effect of Morphology on Grain Instability in Cu;314
24.3;22.3 Shock Loading Damage in Tantalum;316
24.3.1;22.3.1 Effect of Shock Duration on Incipient Spall Structure;317
24.3.2;22.3.2 Effect of Pressure on Incipient Spall Structure;320
24.4;22.4 Conclusions;320
24.5;References;321
25;23 Texture Separation for 0 / 0 Titanium Alloys;323
25.1;23.1 Introduction;323
25.2;23.2 Microstructure Microstructure of / Titanium / Titanium Alloys;323
25.3;23.3 Texture of Ti-6Al-4V Ti-6Al-4V ;324
25.3.1;23.3.1 Separation of Primary and Secondary Alpha secondary alpha Texture texture ;325
25.3.2;23.3.2 EBSD + BSE Imaging Technique;325
25.3.3;23.3.3 EBSD or XRD + Heat Treatment Technique;326
25.4;23.4 Texture Separation Using EBSD + EDS EDS Technique;326
25.4.1;23.4.1 Procedures for the EBSD/ EDS EDS ;326
25.4.2;23.4.2 Microstructure Microstructure Observations;327
25.4.3;23.4.3 Chemical Composition Maps ( EDS EDS );327
25.5;23.5 Industrial Application: Controlling Texture texture During Hot-Rolling hot rolling of Ti-6Al-4V Ti-6Al-4V ;328
25.5.1;23.5.1 Microstructure Microstructure Evolution;329
25.5.2;23.5.2 Overall Texture Evolution;329
25.5.3;23.5.3 Primary-Alpha ( 0 p ) Textures;330
25.5.4;23.5.4 Secondary-Alpha (0 s ) Texture texture ;331
25.6;23.6 Conclusions;332
25.7;References;332
26;24 A Review of In Situ EBSD Studies;334
26.1;24.1 Introduction;334
26.2;24.2 In Situ Postmortem Experiments;335
26.3;24.3 Deformation Stage Experiments;336
26.4;24.4 Heating Stage Experiments;337
26.4.1;24.4.1 Phase Transformation;337
26.4.2;24.4.2 Recrystallization and Grain Growth;338
26.5;24.5 Combined Heating and Tensile Stage Experiments;340
26.6;24.6 Conclusions;340
26.7;References;341
27;25 Electron Backscatter Diffraction in Low Vacuum Conditions;343
27.1;25.1 Introduction;343
27.2;25.2 Considerations for Low Vacuum EBSD;344
27.3;25.3 Example Applications;345
27.3.1;25.3.1 Microstructural Analysis of AlN-TiB 2 Ceramic Composite;345
27.3.2;25.3.2 Characterization of CaHPO 4 02H 2 O Single Crystals;346
27.4;References;348
28;26 EBSD in the Earth Sciences: Applications, Common Practice, and Challenges;349
28.1;26.1 Development of EBSD in Earth Sciences;349
28.2;26.2 Current Practice, Capabilities, and Limitations;350
28.2.1;26.2.1 Range of Materials and Preparation;350
28.2.2;26.2.2 Speed of Data Collection;351
28.2.3;26.2.3 Spatial Resolution;351
28.2.4;26.2.4 Misindexing;352
28.2.5;26.2.5 Polyphase Samples;354
28.3;26.3 Application of EBSD in Earth Sciences;355
28.3.1;26.3.1 Rock Deformation and Solid Earth Geophysics;356
28.3.2;26.3.2 Metamorphic Processes;359
28.3.3;26.3.3 Meteorites;360
28.3.4;26.3.4 Other Areas;360
28.4;26.4 Conclusions;361
28.5;References;361
29;27 Orientation Imaging Microscopy in Research on High Temperature Oxidation;365
29.1;27.1 Introduction;365
29.2;27.2 High Temperature Oxidation;366
29.3;27.3 Experimental Procedure;367
29.3.1;27.3.1 Oxidation of Samples and Oxide Formation;367
29.3.2;27.3.2 Sample Preparation and Geometry in OIM;368
29.3.3;27.3.3 Microstructure and Texture Measurement;369
29.3.4;27.3.4 Oxidation of Low Carbon Steel;369
29.3.4.1;27.3.4.1 Microstructure Investigation by OIM;370
29.3.4.2;27.3.4.2 Phase Analysis;370
29.4;27.4 Results and Discussion;372
29.4.1;27.4.1 Grain Growth in Iron Oxide;372
29.4.1.1;27.4.1.1 Grain Growth of Wüstite;372
29.4.1.2;27.4.1.2 Grain Growth of Magnetite;373
29.4.1.3;27.4.1.3 Grain Growth of Hematite;375
29.4.2;27.4.2 Effect of the Oxidation Process on Microstructure;375
29.4.3;27.4.3 Oxidation of Pure Iron;377
29.4.3.1;27.4.3.1 Effects of Substrate Deformation and Texture on Oxidation;377
29.4.3.2;27.4.3.2 Structure of Interfaces;381
29.5;27.5 Cracks and Defects;388
29.6;27.6 Conclusion;393
29.7;References;396
30;Index;396




