Schwarz | Morse Homology | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band 111, 236 Seiten, eBook

Reihe: Progress in Mathematics

Schwarz Morse Homology


1993
ISBN: 978-3-0348-8577-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 111, 236 Seiten, eBook

Reihe: Progress in Mathematics

ISBN: 978-3-0348-8577-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



1.1 Background The subject of this book is Morse homology as a combination of relative Morse theory and Conley's continuation principle. The latter will be useda s an instrument to express the homology encoded in a Morse complex associated to a fixed Morse function independent of this function. Originally, this type of Morse-theoretical tool was developed by Andreas Floer in order to find a proof of the famous Arnold conjecture, whereas classical Morse theory turned out to fail in the infinite-dimensional setting. In this framework, the homological variant of Morse theory is also known as Floer homology. This kind of homology theory is the central topic of this book. But first, it seems worthwhile to outline the standard Morse theory. 1.1.1 Classical Morse Theory The fact that Morse theory can be formulated in a homological way is by no means a new idea. The reader is referred to the excellent survey paper by Raoul Bott [Bol.

Schwarz Morse Homology jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1 Introduction.- 1.1 Background.- 1.1.1 Classical Morse Theory.- 1.1.2 Relative Morse Theory.- 1.1.3 The Continuation Principle.- 1.2 Overview.- 1.2.1 The Construction of the Morse Homology.- 1.2.2 The Axiomatic Approach.- 1.3 Remarks on the Methods.- 1.4 Table of Contents.- 1.5 Acknowledgments.- 2 The Trajectory Spaces.- 2.1 The Construction of the Trajectory Spaces.- 2.2 Fredholm Theory.- 2.2.1 The Fredholm Operator on the Trivial Bundle.- 2.2.2 The Fredholm Operator on Non-Trivial Bundles.- 2.2.3 Generalization to Fredholm Maps.- 2.3 Transversality.- 2.3.1 The Regularity Conditions.- 2.3.2 The Regularity Results.- 2.4 Compactness.- 2.4.1 The Space of Unparametrized Trajectories.- 2.4.2 The Compactness Result for Unparametrized Trajectories.- 2.4.3 The Compactness Result for Homotopy Trajectories.- 2.4.4 The Compactness Result for ?-Parametrized Trajectories.- 2.5 Gluing.- 2.5.1 Gluing for the Time-Independent Trajectory Spaces.- 2.5.2 Gluing of Trajectories of the Time-Dependent Gradient Flow.- 2.5.3 Gluing for ?-Parametrized Trajectories.- 3 Orientation.- 3.1 Orientation and Gluing in the Trivial Case.- 3.1.1 The Determinant Bundle.- 3.1.2 Gluing and Orientation for Fredholm Operators.- 3.2 Coherent Orientation.- 3.2.1 Orientation and Gluing on the Manifold M.- 4 Morse Homology Theory.- 4.1 The Main Theorems of Morse Homology.- 4.1.1 Canonical Orientations.- 4.1.2 The Morse Complex.- 4.1.3 The Canonical Isomorphism.- 4.1.4 Topology and Coherent Orientation.- 4.2 The Eilenberg-Steenrod Axioms.- 4.2.1 Extension of Morse Functions and Induced Morse Functions on Vector Bundles.- 4.2.2 The Homology Functor and Homotopy Invariance.- 4.2.3 Relative Morse Homology.- 4.2.4 Summary.- 4.3 The Uniqueness Result.- 5 Extensions.- 5.1 Morse Cohomology.- 5.2 Poincaré Duality.- 5.3 Products.- A Curve Spaces and Banach Bundles.- B The Geometric Boundary Operator.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.