Scott | Multivariate Density Estimation | E-Book | sack.de
E-Book

E-Book, Englisch, 384 Seiten, E-Book

Reihe: Wiley Series in Probability and Statistics

Scott Multivariate Density Estimation

Theory, Practice, and Visualization
2. Auflage 2015
ISBN: 978-1-118-57548-2
Verlag: John Wiley & Sons
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

Theory, Practice, and Visualization

E-Book, Englisch, 384 Seiten, E-Book

Reihe: Wiley Series in Probability and Statistics

ISBN: 978-1-118-57548-2
Verlag: John Wiley & Sons
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Clarifies modern data analysis through nonparametric density estimation for a complete working knowledge of the theory and methods
Featuring a thoroughly revised presentation, Multivariate Density Estimation: Theory, Practice, and Visualization, Second Edition maintains an intuitive approach to the underlying methodology and supporting theory of density estimation. Including new material and updated research in each chapter, the Second Edition presents additional clarification of theoretical opportunities, new algorithms, and up-to-date coverage of the unique challenges presented in the field of data analysis.
The new edition focuses on the various density estimation techniques and methods that can be used in the field of big data. Defining optimal nonparametric estimators, the Second Edition demonstrates the density estimation tools to use when dealing with various multivariate structures in univariate, bivariate, trivariate, and quadrivariate data analysis. Continuing to illustrate the major concepts in the context of the classical histogram, Multivariate Density Estimation: Theory, Practice, and Visualization, Second Edition also features:
* Over 150 updated figures to clarify theoretical results and to show analyses of real data sets
* An updated presentation of graphic visualization using computer software such as R
* A clear discussion of selections of important research during the past decade, including mixture estimation, robust parametric modeling algorithms, and clustering
* More than 130 problems to help readers reinforce the main concepts and ideas presented
* Boxed theorems and results allowing easy identification of crucial ideas
* Figures in color in the digital versions of the book
* A website with related data sets
Multivariate Density Estimation: Theory, Practice, and Visualization, Second Edition is an ideal reference for theoretical and applied statisticians, practicing engineers, as well as readers interested in the theoretical aspects of nonparametric estimation and the application of these methods to multivariate data. The Second Edition is also useful as a textbook for introductory courses in kernel statistics, smoothing, advanced computational statistics, and general forms of statistical distributions.

Scott Multivariate Density Estimation jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


David W. Scott, PhD, is Noah Harding Professor in theDepartment of Statistics at Rice University. The author of over 100published articles, papers, and book chapters, Dr. Scott is alsoFellow of the American Statistical Association (ASA) and theInstitute of Mathematical Statistics. He is recipient of the ASAFounder's Award and the Army Wilks Award. His researchinterests include computational statistics, data visualization, anddensity estimation. Dr. Scott is also Coeditor of WileyInterdisciplinary Reviews: Computational Statistics andprevious Editor of the Journal of Computational and GraphicalStatistics.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.