Sengupta | Chaos, Nonlinearity, Complexity | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band 206, 371 Seiten

Reihe: Studies in Fuzziness and Soft Computing

Sengupta Chaos, Nonlinearity, Complexity

The Dynamical Paradigm of Nature
1. Auflage 2006
ISBN: 978-3-540-31757-9
Verlag: Springer Berlin Heidelberg
Format: PDF
Kopierschutz: 1 - PDF Watermark

The Dynamical Paradigm of Nature

E-Book, Englisch, Band 206, 371 Seiten

Reihe: Studies in Fuzziness and Soft Computing

ISBN: 978-3-540-31757-9
Verlag: Springer Berlin Heidelberg
Format: PDF
Kopierschutz: 1 - PDF Watermark



This carefully edited book presents a focused debate on the mathematics and physics of chaos, nonlinearity and complexity in nature. It explores the role of non-extensive statistical mechanics in non-equilibrium thermodynamics, and presents an overview of the strong nonlinearity of chaos and complexity in natural systems that draws on the relevant mathematics from topology, measure-theory, inverse and ill-posed problems, set-valued analysis, and nonlinear functional analysis. It presents a self-contained scientific theory of complexity and complex systems as the steady state of non-equilibrium systems, denoting a homeostatic dynamic equilibrium between stabilizing order and destabilizing disorder.

Written for: Researchers, engineers, graduate students in Soft Computing, Fuzziness, Complexity
Keywords: Chaos, Complexity, Nonlinear Functional Analysis, Nonlinearity.

Sengupta Chaos, Nonlinearity, Complexity jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Preface;8
2;Contents;14
3;List of Contributors;16
4;1 Chaos, Periodicity and Complexity on Dynamical Systems;18
4.1;1.1 Introduction;18
4.2;1.2 On the periodic structure of some dynamical systems;23
4.3;1.3 Metric entropy or Kolmogorov-Sinai entropy (KS);37
4.4;1.4 Properties of the metric entropy of measurable sequences;46
4.5;1.5 Topological entropy;63
4.6;References;65
5;2 Critical Attractors and the Physical Realm of q-statistics;70
5.1;2.1 Outline;70
5.2;2.2 Part I. Anomalous dynamics at onset of chaos and other critical attractors in unimodal maps;73
5.3;2.3 Part II. Critical attractor dynamics in thermal systems at phase transitions and glass formation;87
5.4;2.4 Clarifying remarks;105
5.5;References;109
6;3 Foundations of Nonextensive Statistical Mechanics;112
6.1;3.1 Introduction;112
6.2;3.2 Maximum Tsallis entropy principle;114
6.3;3.3 Method of steepest descents;117
6.4;3.4 Counting algorithm;120
6.5;3.5 Evaluation of the density of states;123
6.6;3.6 Generalized Boltzmann equation;127
6.7;3.7 Concluding remarks;129
6.8;Acknowledgment;130
6.9;References;130
7;4 Non-Boltzmannian Entropies for Complex Classical Systems, Quantum Coherent States and Black Holes;131
7.1;4.1 Introduction;131
7.2;4.2 Helmholtz free energy and Renyi entropy;134
7.3;4.3 On stability of Renyi and Tsallis entropies;138
7.4;4.4 Axiomatics of an information entropy;144
7.5;4.5 MEP for Renyi entropy;148
7.6;4.6 MEP for Tsallis entropy;151
7.7;4.7 Small subsystem with .uctuating temperature;153
7.8;4.8 Power-law Hamiltonian;159
7.9;4.9 Transfer to Renyi thermostatistics as a phase transition;161
7.10;4.10 The most probable value of the Renyi parameter;162
7.11;4.11 Conclusive Notes on the Renyi entropy and Self- Organization;164
7.12;4.12 Thermodynamics of a Quantum Mechanical system in Coherent State;166
7.13;References;175
8;5 Modelling and Analysis of LRD in Packet Networks: Tsallis Entropy Framework;179
8.1;5.1 Introduction;179
8.2;5.2 Tsallis Entropy and Some Other Parametric Entropies;182
8.3;5.3 Axiomatic Foundations of Parametric Entropies;185
8.4;5.4 Tsallis Entropy and Network Tra.c;188
8.5;5.5 Internet Traffic and Tsallis Entropy;191
8.6;5.6 Broadband Networks and Non-Extensive Thermodynamics;192
8.7;5.7 Conclusion;193
8.8;References;193
9;6 The Role of Chaos and Resonances in Brownian Motion;197
9.1;6.1 Introduction;197
9.2;6.2 The Prigogine school;198
9.3;6.3 Mechanical model for Brownian motion;201
9.4;6.4 Entropy and information;205
9.5;6.5 Results;211
9.6;6.6 Thermalization of the lattice;220
9.7;6.7 Conclusion;222
9.8;References;224
10;7 Models of Finite Bath and Generalised Thermodynamics;225
10.1;7.1 Introduction;225
10.2;7.2 Derivation of canonical ensemble from microcanonical ensemble;226
10.3;7.3 Gaussian ensemble;227
10.4;7.4 q-exponential distributions and model of .nite heat bath;230
10.5;7.5 A new model for .nite bath;231
10.6;7.6 Discussion;232
10.7;Acknowledgements;234
10.8;References;234
11;8 Quantum Black Hole Thermodynamics;236
11.1;8.1 Introduction;236
11.2;8.2 Black holes in general relativity;239
11.3;8.3 Black hole thermodynamics;242
11.4;8.4 Microcanonical entropy;245
11.5;8.5 Canonical entropy;256
11.6;8.6 Conclusions;262
11.7;References;263
12;9 Complexity in Organizations: A Paradigm Shift;265
12.1;9.1 Complexity in organizations: a paradigm shift;265
12.2;9.2 A paradigm shift;266
12.3;9.3 Core paradigmatic focus;267
12.4;9.4 The functions of organization;270
12.5;9.5 Organizational control;271
12.6;9.6 Emergence;277
12.7;9.7 Motivation;278
12.8;9.8 De.nition of leadership;280
12.9;9.9 Complexity versus top-down?;281
12.10;9.10 Conclusions;282
12.11;References;282
13;10 Chaos, Nonlinearity, Complexity: A Uni.ed Perspective;288
13.1;10.1 Introduction;289
13.2;10.2 ChaNoXity: Chaos, Nonlinearity, Complexity;294
13.3;10.4 Conclusions: The Mechanics of Thermodynamics;365
13.4;References;368
14;Index;372



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.