E-Book, Englisch, 535 Seiten
Sharma Deep-Sea Mining
1. Auflage 2017
ISBN: 978-3-319-52557-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Resource Potential, Technical and Environmental Considerations
E-Book, Englisch, 535 Seiten
ISBN: 978-3-319-52557-0
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
This comprehensive book contains contributions from specialists who provide a complete status update along with outstanding issues encompassing different topics related to deep-sea mining. Interest in exploration and exploitation of deep-sea minerals is seeing a revival due to diminishing grades and increasing costs of processing of terrestrial minerals as well as availability of several strategic metals in seabed mineral resources; it therefore becomes imperative to take stock of various issues related to deep-sea mining.
The authors are experienced scientists and engineers from around the globe developing advanced technologies for mining and metallurgical extraction as well as performing deep sea exploration for several decades. They invite readers to learn about the resource potential of different deep-sea minerals, design considerations and development of mining systems, and the potential environmental impacts of mining in international waters.
Dr. Rahul Sharma is a Chief Scientist at the National Institute of Oceanography in Goa, India. He received his PhD in Marine Science from Goa University in 1997. His research interests include development of underwater photography for deep-sea exploration, environmental impact assessment for deep-sea mining, and application of environmental data for deep-sea mining and environmental conservation.
Autoren/Hrsg.
Weitere Infos & Material
1;Foreword;5
2;Preface;7
3;Contents;9
4;Part I: Deep-Sea Minerals: Distribution Characteristics and Their Resource Potential;11
4.1;Chapter 1: Deep-Sea Mining: Current Status and Future Considerations;12
4.1.1;1.1 Historical Perspective;12
4.1.2;1.2 Economic Issues;17
4.1.3;1.3 Technical Issues;20
4.1.3.1;1.3.1 Delineation of Mine-Site and Estimation of Area for Mining;20
4.1.3.2;1.3.2 Mining System Development;21
4.1.3.3;1.3.3 Processing Technology and Waste Management;22
4.1.4;1.4 Environmental Issues;23
4.1.4.1;1.4.1 Impact of Environment on Mining;23
4.1.4.2;1.4.2 Impact of Mining on Environment;23
4.1.5;1.5 Policy Issues;26
4.1.6;References;27
4.2;Chapter 2: Composition, Formation, and Occurrence of Polymetallic Nodules;31
4.2.1;2.1 Introduction;32
4.2.2;2.2 Classification and Description;33
4.2.2.1;2.2.1 General Classification;33
4.2.2.2;2.2.2 Macroscopic and Microscopic Descriptions;33
4.2.3;2.3 Chemical and Mineralogical Composition;37
4.2.3.1;2.3.1 Chemical Composition;37
4.2.3.2;2.3.2 Mineralogical Composition;44
4.2.4;2.4 Formation of Manganese Nodules;47
4.2.4.1;2.4.1 Hydrogenetic Precipitation;47
4.2.4.2;2.4.2 Diagenetic Precipitation;51
4.2.4.3;2.4.3 Microbial Manganese Mobilization and Deposition;58
4.2.4.4;2.4.4 Hydrothermal Precipitation;59
4.2.5;2.5 Occurrence of Manganese Nodules;60
4.2.5.1;2.5.1 Clarion-Clipperton Zone;60
4.2.5.2;2.5.2 Peru Basin;63
4.2.5.3;2.5.3 Cook Islands;63
4.2.5.4;2.5.4 Central Indian Ocean Basin;64
4.2.5.5;2.5.5 Other Ocean Areas;65
4.2.6;References;65
4.3;Chapter 3: Marine Co-Rich Ferromanganese Crust Deposits: Description and Formation, Occurrences and Distribution, Estimated World-wide Resources;72
4.3.1;3.1 Introduction;72
4.3.2;3.2 Occurrence and Nature;73
4.3.3;3.3 Mineralogy;78
4.3.4;3.4 Formation and Growth Processes;83
4.3.4.1;3.4.1 Hydrogenetic Accretion;83
4.3.4.2;3.4.2 Diagenesis of and Epigenetic Mineral Formation in Older Crust Layers;89
4.3.4.3;3.4.3 Chemical Composition;95
4.3.4.3.1;3.4.3.1 Introduction;95
4.3.4.3.2;3.4.3.2 Major Constituents;97
4.3.4.3.3;3.4.3.3 Minor Elements;101
4.3.4.3.4;3.4.3.4 Trace Elements;103
4.3.4.3.4.1;Molybdenum and Tungsten;103
4.3.4.3.4.2;Platinum and Palladium;104
4.3.4.3.4.3;Niob and Gallium;111
4.3.4.3.4.4;Tellurium;112
4.3.4.3.4.5;Rare Earth Elements (REE);114
4.3.4.3.5;3.4.3.5 Metal Composition Versus Water Depth;119
4.3.4.3.6;3.4.3.6 Interelement Relationships;122
4.3.5;3.5 Total and Regional Metal Potentials;131
4.3.5.1;3.5.1 Resource Assessment Model for Ferromanganese Crust Deposits;131
4.3.5.2;3.5.2 Economic Considerations;136
4.3.5.3;3.5.3 Regional Distribution of Crust Deposits;138
4.3.6;3.6 Conclusions;143
4.3.7;References;145
4.4;Chapter 4: Seafloor Massive Sulfide Deposits: Distribution and Prospecting;149
4.4.1;4.1 Introduction;149
4.4.2;4.2 Historical Review of Hydrothermal Systems and SMS Deposits Study;150
4.4.3;4.3 Distribution and Geological Setting of SMS Deposits;152
4.4.4;4.4 Morphology of SMS Deposits;156
4.4.5;4.5 Composition and Aging of SMS Deposits;161
4.4.5.1;4.5.1 Age of SMS Deposits;162
4.4.6;4.6 Formation and Source of Metals in SMS Deposits;163
4.4.7;4.7 Criteria for Recognition and Strategy of SMS Exploration;164
4.4.8;4.8 Exploration Technologies;165
4.4.8.1;4.8.1 Hydrological Tools;165
4.4.8.2;4.8.2 Geological Sampling Tools;166
4.4.8.3;4.8.3 Remote and Autonomous Operating Vehicles;166
4.4.8.4;4.8.4 Drilling Systems;166
4.4.8.5;4.8.5 Manned Submersibles;167
4.4.9;References;167
4.5;Chapter 5: Submarine Phosphorites: The Deposits of the Chatham Rise, New Zealand, off Namibia and Baja California, Mexico—Origin, Exploration, Mining, and Environmental Issues;171
4.5.1;5.1 Introduction;171
4.5.2;5.2 Authigenic and Diagenetic Formation of Phosphorite;172
4.5.3;5.3 The Chatham Rise Phosphorite;174
4.5.3.1;5.3.1 Regional Setting and Seafloor Morphology;174
4.5.3.2;5.3.2 Oceanographic Setting;177
4.5.3.3;5.3.3 Formation of the Chatham Rise Phosphorites;177
4.5.3.4;5.3.4 Distribution and Composition of the Chatham Rise Phosphorites;179
4.5.3.5;5.3.5 Resource Estimation and Mining Concept;182
4.5.3.6;5.3.6 Exploration History and Present Status (2015);184
4.5.4;5.4 Phosphorite Deposits off South Africa and Namibia;185
4.5.4.1;5.4.1 Diagenetic Phosphorites off South Africa;185
4.5.4.2;5.4.2 Authigenic Phosphorites off Namibia;186
4.5.4.2.1;5.4.2.1 The Sandpiper Prospect;187
4.5.4.2.2;5.4.2.2 Mining Concept;187
4.5.4.2.3;5.4.2.3 Environmental Issues;188
4.5.5;5.5 Authigenic Phosphorites off Baja California;189
4.5.6;5.6 Future Development Prospects;189
4.5.7;References;190
4.6;Chapter 6: Predictive Mapping of the Nodule Abundance and Mineral Resource Estimation in the Clarion-Clipperton Zone Using Artificial Neural Networks and Classical Geostatistical Methods;194
4.6.1;6.1 Introduction;194
4.6.1.1;6.1.1 Scope of Work;194
4.6.1.2;6.1.2 Data Used;195
4.6.1.3;6.1.3 Software Used;196
4.6.2;6.2 Description of Study Area;196
4.6.2.1;6.2.1 Bathymetry;196
4.6.2.2;6.2.2 Backscatter Data;198
4.6.3;6.3 Predictive Mapping of Manganese Nodule Abundance;199
4.6.3.1;6.3.1 Theoretical Background;199
4.6.3.1.1;6.3.1.1 Artificial Neural Networks (ANN);199
4.6.3.1.2;6.3.1.2 Classical Geostatistics (Kriging);201
4.6.3.2;6.3.2 Data Processing;201
4.6.3.3;6.3.3 Model Development and Calibration;203
4.6.4;6.4 Modelling Results;203
4.6.5;6.5 Resource Estimation of Manganese Nodules;207
4.6.5.1;6.5.1 Resource Estimation Based on the ANN Model;207
4.6.5.2;6.5.2 Resource Estimation Based on the Kriging Model;209
4.6.6;6.6 Classification of Manganese Mineral Resources;210
4.6.7;6.7 Conclusions and Recommendations;212
4.6.8;References;214
4.7;Chapter 7: Statistical Properties of Distribution of Manganese Nodules in Indian and Pacific Oceans and Their Applications in Assessing Commonality Levels and in Exploration Planning;218
4.7.1;7.1 Introduction;218
4.7.2;7.2 Nature of Data and Sources Used in the Study;219
4.7.2.1;7.2.1 Major Sources of the Data Include;219
4.7.3;7.3 Studies on Variabilities of Abundance and Metal Grades in Nodule Deposits;221
4.7.4;7.4 Further Studies on Statistical Properties of Distribution of Nodule Abundance;222
4.7.5;7.5 Comparative Variability Studies Between CIOB and CCZ;224
4.7.6;7.6 Estimation Variance in Relation to Area of Nodule Field;225
4.7.6.1;7.6.1 Verification of the Var(e)·Area Relationship;227
4.7.7;7.7 Estimation Variance Computations for Selected Areas in CIOB and CCZ;228
4.7.7.1;7.7.1 Observations on the Estimation Variance Values;229
4.7.8;7.8 Commonality in Distribution Characteristics of Nodules in CIOB and CCZ;231
4.7.9;7.9 Conclusions;231
4.7.10;References;232
4.8;Chapter 8: Assessment of Distribution Characteristics of Polymetallic Nodules and Their Implications on Deep-Sea Mining;234
4.8.1;8.1 Introduction;234
4.8.2;8.2 Estimation of Nodule Characteristics and Associated Features;236
4.8.2.1;8.2.1 Measurement of Area Covered on the Seafloor;236
4.8.2.2;8.2.2 Calculation of Nodule Abundance;237
4.8.3;8.3 Distribution of Nodule Characteristics and Associated Features;238
4.8.3.1;8.3.1 Frequency Distribution of Nodule: Size, Coverage, Abundance;238
4.8.3.1.1;8.3.1.1 Nodule Size;238
4.8.3.1.2;8.3.1.2 Nodule Coverage;241
4.8.3.1.3;8.3.1.3 Nodule Abundance;241
4.8.3.2;8.3.2 Association of Nodules with Different Substrates;242
4.8.3.2.1;8.3.2.1 Effect of Sediment Cover;243
4.8.3.2.2;8.3.2.2 Distribution of Rock Exposures;243
4.8.3.3;8.3.3 Nodule Distribution in Different Topographic Settings;244
4.8.4;8.4 Estimation of Mining-Related Variables;245
4.8.4.1;8.4.1 Estimation of Mining Rates;245
4.8.4.2;8.4.2 Estimation of Metal Production (MP);245
4.8.4.3;8.4.3 Estimation of Metal Value (MV);246
4.8.4.4;8.4.4 Estimating Total Mineable Area (M) According to UNOET (1987);246
4.8.4.5;8.4.5 Size (or Area) of Mine-Site (As) According to UNOET (1987) Is;246
4.8.4.6;8.4.6 Area of Contact/Year (Ac);246
4.8.4.7;8.4.7 Ore Production/Day (Op);247
4.8.4.8;8.4.8 Volume of Sediment Disturbed at the Seafloor (Vs in m3);247
4.8.4.9;8.4.9 Wt. of Disturbed Sediment (Wet) or Water Laden Sediment (Ws(wet) in t);247
4.8.4.10;8.4.10 Wt. of Disturbed Sediment (Dry) or without Water (Ws(dry) in t);247
4.8.4.11;8.4.11 Wt. of Unwanted Material (Mu) to be Disposed Off (in Mt);247
4.8.5;8.5 Mining Estimates Based on Geological Factors;248
4.8.5.1;8.5.1 Estimation of Mining Rates for Dry and Wet Nodules;248
4.8.5.2;8.5.2 Metal Production for Different Mining Rates;249
4.8.5.3;8.5.3 Mining Estimates for Different Mining Rates;249
4.8.5.3.1;8.5.3.1 Estimation of Mineable Area;249
4.8.5.3.2;8.5.3.2 Area (Size) of Mine-Site;250
4.8.5.3.3;8.5.3.3 Area of Contact;250
4.8.5.3.4;8.5.3.4 Ore Production;250
4.8.5.3.5;8.5.3.5 Volume and Weight of Disturbed Sediment;252
4.8.5.3.6;8.5.3.6 Unwanted Material After Metallurgical Processing;252
4.8.6;8.6 Influence of Geological Factors on Mining Design;253
4.8.6.1;8.6.1 Nodule Characteristics;253
4.8.6.2;8.6.2 Association with Different Substrates;253
4.8.6.3;8.6.3 Relation with Topography;254
4.8.6.4;8.6.4 Optimization of Mining Rates;254
4.8.6.5;8.6.5 Ore Production and Area of Mine-Site;254
4.8.6.6;8.6.6 Environmental Impact and Waste Disposal;255
4.8.7;8.7 Conclusions;256
4.8.8;References;258
5;Part II: Deep-Sea Mining Technology: Concepts and Applications;262
5.1;Chapter 9: Fundamental Geotechnical Considerations for Design of Deep-Sea Mining Systems;263
5.1.1;9.1 Introduction;263
5.1.2;9.2 Importance of Geotechnical Characteristics on Design of Mining System;264
5.1.3;9.3 Geotechnical Characteristics of Deep-Sea Minerals;268
5.1.3.1;9.3.1 Manganese Nodules and Deep-Sea Sediments;268
5.1.3.1.1;9.3.1.1 Manganese Nodules;268
5.1.3.1.2;9.3.1.2 Deep-Sea Sediments;270
5.1.3.1.2.1;Sediment Sampling;270
5.1.3.1.2.2;Static Characteristics;270
5.1.3.1.2.3;Dynamic Characteristics;272
5.1.3.1.2.4;In Situ Measurement;276
5.1.3.2;9.3.2 Seafloor Massive Sulfides;276
5.1.3.3;9.3.3 Cobalt-Rich Manganese Crusts and Seamount Sediments;279
5.1.3.3.1;9.3.3.1 Crusts and Substrates;279
5.1.3.3.2;9.3.3.2 Seamount Sediments;282
5.1.3.3.2.1;Sediment Sampling;282
5.1.3.3.2.2;Geotechnical Characteristics;283
5.1.4;9.4 Interactions with Mining Systems;285
5.1.4.1;9.4.1 Interactions with Miner;285
5.1.4.1.1;9.4.1.1 Drag;285
5.1.4.1.2;9.4.1.2 Separating Force;289
5.1.4.1.3;9.4.1.3 Seafloor Plume;289
5.1.4.2;9.4.2 Interactions with Lift System;291
5.1.4.2.1;9.4.2.1 Abrasion of Nodules;291
5.1.4.2.2;9.4.2.2 Powderization of Sediments;292
5.1.5;9.5 Actual Design of Deep-Sea Mining System;293
5.1.6;9.6 Environmental Impact Studies and Scale of BIEs;296
5.1.7;9.7 Conclusions;297
5.1.8;References;299
5.2;Chapter 10: Concepts of Deep-Sea Mining Technologies;309
5.2.1;10.1 Introduction;309
5.2.2;10.2 Historical Perspective;312
5.2.3;10.3 Present-Day Technology;314
5.2.3.1;10.3.1 Technical Specification of Underwater Mining System;317
5.2.4;10.4 Studies Involved in Shallow Water Testing of Underwater Mining System;318
5.2.4.1;10.4.1 Developmental Studies on Hydraulic Devices for Deep Sea in Hyperbaric Chamber;318
5.2.4.2;10.4.2 Developmental Studies on Acoustic Positioning Systems;318
5.2.4.3;10.4.3 Underwater Nodule Imaging System;319
5.2.4.4;10.4.4 Investigations on Interactions of the Seabed with Nodule Collector;321
5.2.4.5;10.4.5 Developmental Studies on Underwater Crushing Systems;321
5.2.4.6;10.4.6 Flexible Riser System;322
5.2.4.7;10.4.7 Development of Testing Facilities and Indigenous Deep-Sea Devices;323
5.2.5;10.5 Laying of Artificial Nodules and Mining of Them at Shallow Waters;325
5.2.5.1;10.5.1 Mechanical Systems;326
5.2.5.2;10.5.2 Hydraulic Power Pack;326
5.2.5.3;10.5.3 Servo Valve Pack;326
5.2.5.4;10.5.4 Vane Feeder;327
5.2.5.5;10.5.5 Thrusters;328
5.2.5.6;10.5.6 Electrical Power Distribution System;328
5.2.5.7;10.5.7 Telemetry;328
5.2.5.8;10.5.8 Software;331
5.2.5.9;10.5.9 Artificial Nodules Development;331
5.2.5.10;10.5.10 Control and Operations;332
5.2.5.11;10.5.11 Sea Trials at 520-m Water Depth;333
5.2.6;10.6 Development of Mining System for Mining of Artificial Nodules;335
5.2.6.1;10.6.1 Mining Machine;335
5.2.6.2;10.6.2 Specification of Underwater Mining Machine;337
5.2.6.3;10.6.3 Data Acquisition System on Ship;337
5.2.6.4;10.6.4 Telemetry System;339
5.2.6.5;10.6.5 Dynamic Positioning System;340
5.2.6.6;10.6.6 Acoustic Positioning System;341
5.2.6.7;10.6.7 Testing of System;342
5.2.6.8;10.6.8 Launching and Retrieval System;342
5.2.7;10.7 In Situ Soil Tester;345
5.2.8;References;345
5.3;Chapter 11: An Application of Ocean Mining Technology: Deep Ocean Water Utilization;348
5.3.1;11.1 Introduction;348
5.3.2;11.2 Features of Deep Ocean Water;350
5.3.2.1;11.2.1 Water Temperature;350
5.3.2.2;11.2.2 Nutrient Concentration;351
5.3.2.3;11.2.3 Viable Bacterial Count;351
5.3.2.4;11.2.4 Consumable Capacity of DOW;352
5.3.3;11.3 Deep Ocean Water Applications;354
5.3.3.1;11.3.1 Ocean Thermal Energy Conversion (OTEC);354
5.3.3.2;11.3.2 Air Conditioning;354
5.3.3.3;11.3.3 Fisheries Application;355
5.3.3.4;11.3.4 Agricultural Application;355
5.3.3.5;11.3.5 Freshwater Production;356
5.3.3.6;11.3.6 Other Applications;356
5.3.4;11.4 Multipurpose DOW Complex Float;356
5.3.4.1;11.4.1 Concept of the Float;356
5.3.4.2;11.4.2 Function of Multiple Systems;357
5.3.4.2.1;11.4.2.1 Material Input;358
5.3.4.2.2;11.4.2.2 Production Output;358
5.3.4.2.3;11.4.2.3 Means and Apparatus;359
5.3.4.2.4;11.4.2.4 Method of Operation;360
5.3.4.3;11.4.3 Design of the 5 MW Type DOW Float;360
5.3.4.4;11.4.4 Feasibility Study on the DOW Float;362
5.3.4.5;11.4.5 Conclusion;362
5.3.5;References;364
6;Part III: Metallurgical Processing and Their Sustainable Development;366
6.1;Chapter 12: Metallurgical Processing of Polymetallic Ocean Nodules;367
6.1.1;12.1 Introduction;367
6.1.1.1;12.1.1 Polymetallic Nodule as an Ore;368
6.1.1.2;12.1.2 Considerations for Metallurgical Processing of Nodule;370
6.1.2;12.2 The First Phase of Development of Metallurgical Processes for Nodules (1970–1985);370
6.1.2.1;12.2.1 The Cuprion Process;370
6.1.2.2;12.2.2 Deep Sea Ventures (DSV) Process;372
6.1.2.3;12.2.3 The Métallurgie Hoboken-Overpelt (MHO) Process;372
6.1.2.4;12.2.4 International Nickel Company (INCO) Process;372
6.1.2.5;12.2.5 High Pressure Acid Leaching Process;374
6.1.3;12.3 Second Phase of R and D Efforts for Processing of Nodules (1985–2000);375
6.1.3.1;12.3.1 Four Metal Recovery by Aqueous Reduction in Acidic Media;375
6.1.3.2;12.3.2 Three Metal Recovery by Aqueous Reduction in Ammoniacal Medium;376
6.1.3.2.1;12.3.2.1 The National Institute for Resources and Environment (NIRE) of Japan;376
6.1.3.2.2;12.3.2.2 Reduction Roasting Ammoniacal Leaching Process;376
6.1.4;12.4 Recent Developments in Metallurgical Processing of Nodules by Some of the Contractors (2000 Onwards);379
6.1.4.1;12.4.1 Processes Developed by Various Organizations Sponsored by MOES India;379
6.1.4.1.1;12.4.1.1 NH3-SO2 Process;379
6.1.4.1.2;12.4.1.2 Reduction Roasting Ammoniacal Leaching Process;381
6.1.4.1.3;12.4.1.3 Aqueous Reduction in Sulphuric Acid;381
6.1.4.2;12.4.2 Processes Developed by IOM (an Intergovernmental Consortium of Bulgaria, Cuba, Czech Republic, Poland, Russian Federation, and Slovakia);381
6.1.4.2.1;12.4.2.1 Pyro-hydrometallurgical Process;381
6.1.4.2.2;12.4.2.2 Hydrometallurgical Process;382
6.1.4.3;12.4.3 Processes Developed by COMRA;383
6.1.4.3.1;12.4.3.1 Pyro-hydrometallurgical Process (Improved INCO Process);383
6.1.4.3.2;12.4.3.2 Improved Cuprion Process;383
6.1.4.4;12.4.4 Processes Developed by KIGAM;383
6.1.5;12.5 A Few New Concepts;387
6.1.5.1;12.5.1 Direct Use of Nodule Alloy in Stainless Steel;387
6.1.5.2;12.5.2 Process Based on HCl-MgCl2 Leaching;388
6.1.6;12.6 Conclusion;388
6.1.7;References;391
6.2;Chapter 13: Sustainable Processing of Deep-Sea Polymetallic Nodules;397
6.2.1;13.1 Introduction;398
6.2.2;13.2 Sustainability: General Outlook;399
6.2.3;13.3 Sustainability and Process Development: Material Flow, Reuse and Critical Metals;400
6.2.4;13.4 The Context of Environmental Management;404
6.2.5;13.5 Impact Analysis of Processes;407
6.2.5.1;13.5.1 Cradle-to-Gate Environmental Burdens: Common Metal Production and GHG Emissions;407
6.2.5.2;13.5.2 Cradle-to-Gate Environmental Burdens: Several Metals;408
6.2.5.3;13.5.3 GER/CED to Predict Environmental Burdens;410
6.2.5.4;13.5.4 Recycle Rates and CED/GHG;410
6.2.6;13.6 Sea Nodules Processing and Sustainability Issues;411
6.2.7;13.7 Observations on Sea Nodules Processing Efforts;411
6.2.7.1;13.7.1 Process Research and Flow Sheet Development;412
6.2.7.2;13.7.2 Three Metal Option to Four Metal Option;412
6.2.7.3;13.7.3 Upscaled Flow Sheet;413
6.2.7.3.1;13.7.3.1 Ni, Co, and Cu Recovery (Approach 1);414
6.2.7.3.2;13.7.3.2 Manganese Recovery from Residue (Approach 1);414
6.2.7.3.3;13.7.3.3 Ni, Co, and Cu Recovery with Manganese Dissolution (Approach 2);415
6.2.7.3.4;13.7.3.4 Smelting of Sea Nodules (Approach 3);415
6.2.7.4;13.7.4 Flow Sheets and Techno-economic Evaluation;415
6.2.8;13.8 Approach for Flow Sheet Impact Analysis: Using Nickel Equivalent;416
6.2.8.1;13.8.1 Partitioning of Flow Scheme for Environmental Impact Using Nickel Equivalent;417
6.2.8.2;13.8.2 Impact of Manganese Recovery;418
6.2.8.3;13.8.3 Impact of Ni, Cu, and Co Recovery;419
6.2.9;13.9 Reagents, Recycles, and Effect on GER;420
6.2.10;13.10 Beyond Four Metal Recovery Route;420
6.2.11;13.11 Conclusions;421
6.2.12;References;422
6.3;Chapter 14: Sustainable Development and Its Application to Mine Tailings of Deep Sea Minerals;425
6.3.1;14.1 Introduction;425
6.3.2;14.2 Applications in Agriculture;428
6.3.3;14.3 Application in Concrete;435
6.3.4;14.4 Application as Construction Fill;437
6.3.5;14.5 Applications as Industrial Fillers;438
6.3.5.1;14.5.1 Resin Casting-Solid Surface;438
6.3.5.2;14.5.2 Tiles;438
6.3.5.3;14.5.3 Rubber;439
6.3.5.4;14.5.4 Plastic;439
6.3.5.5;14.5.5 Coatings;439
6.3.5.6;14.5.6 Drilling Mud;440
6.3.5.7;14.5.7 Ceramics;440
6.3.6;14.6 Conclusions;441
6.3.7;References;442
7;Part IV: Environmental Concerns of Impact of Deep-Sea Mining;444
7.1;Chapter 15: Recent Developments in Environmental Impact Assessment with Regard to Mining of Deep-Sea Mineral Resources;445
7.1.1;15.1 Current Status of Deep-Sea Mineral Resources Development;445
7.1.1.1;15.1.1 Applications for Exploration/Exploitation Licenses;446
7.1.1.2;15.1.2 Participation of Private Enterprises;446
7.1.1.3;15.1.3 Current Technical Progress;448
7.1.2;15.2 Environmental Impact Evaluation;448
7.1.2.1;15.2.1 Impact Identification Thus Far;449
7.1.2.2;15.2.2 Recent Developments in Environmental Impact Assessment;452
7.1.2.3;15.2.3 Impact Evaluation Process;452
7.1.3;15.3 Environmental Conservation Measures;453
7.1.3.1;15.3.1 Initiatives in United Nations;454
7.1.3.2;15.3.2 Ocean Governance in Relation to CBD;454
7.1.3.3;15.3.3 Environmental Conservation in Relation to Deep-Sea Mineral Resources Development;455
7.1.4;15.4 Japan’s Initiatives;457
7.1.4.1;15.4.1 Ascertaining the Relationship Between Mining Methods and Environmental Impacts;457
7.1.4.2;15.4.2 Development of Effective Taxonomic Technologies;458
7.1.4.3;15.4.3 Development of Practical Environmental Monitoring System;458
7.1.4.4;15.4.4 Harmonizing with International Trends;458
7.1.5;15.5 Conclusion;459
7.1.6;References;459
7.2;Chapter 16: Taxonomic Problems in Environmental Impact Assessment (EIA) Linked to Ocean Mining and Possibility of New Technology Developments;464
7.2.1;16.1 The Potential of Deep-Sea Mineral Resource Development;464
7.2.2;16.2 Regularization of Environmental Impact Assessments;466
7.2.3;16.3 Issues with Environmental Impact Assessments;467
7.2.4;16.4 Lack of Human Resources in Taxonomy and Identification for Indexing the Impacts (Issues with Indexing);470
7.2.4.1;16.4.1 Taxonomy and Identification;470
7.2.4.2;16.4.2 Development of Human Resources;471
7.2.4.3;16.4.3 Issues Related to the Lack of Human Resources in Taxonomy and Identification;472
7.2.5;16.5 Molecular Biological Approach in Environmental Impact Assessment;472
7.2.5.1;16.5.1 Application to Species Identification;473
7.2.5.2;16.5.2 Metagenomic Analysis;475
7.2.5.3;16.5.3 Metatranscriptomic Analysis;477
7.2.6;16.6 Conclusion;478
7.2.7;References;478
7.3;Chapter 17: Development of Environmental Management Plan for Deep-Sea Mining;482
7.3.1;17.1 Introduction;482
7.3.2;17.2 Potential Environmental Effects of Deep-Sea Mining;483
7.3.2.1;17.2.1 Potential Seafloor Impacts;484
7.3.2.2;17.2.2 Potential Water-Column Impacts;485
7.3.2.3;17.2.3 Potential Upper-Water Column Impacts;486
7.3.3;17.3 Global Efforts to Understand the Environmental Impacts;486
7.3.3.1;17.3.1 Deep Ocean Mining Environment Study by OMI and OMA, USA;486
7.3.3.2;17.3.2 Disturbance and Re-colonisation Experiment by Germany;486
7.3.3.3;17.3.3 Benthic Impact Experiment by NOAA, USA;487
7.3.3.4;17.3.4 Japan Deep-Sea Impact Experiment by MMAJ, Japan;487
7.3.3.5;17.3.5 Interoceanmetal: Benthic Impact Experiment by East European Consortium;487
7.3.3.6;17.3.6 Indian Deep-Sea Environment Experiment by NIO, India;488
7.3.4;17.4 Evaluating the Results of the Benthic Impact Experiments (BIEs);488
7.3.4.1;17.4.1 Mechanism of the Experiments;488
7.3.4.2;17.4.2 Scale of the Experiments;488
7.3.4.3;17.4.3 Estimation of Weight and Volume of Sediment Discharge;490
7.3.4.4;17.4.4 Extrapolation to Commercial Mining;491
7.3.5;17.5 Environmental Considerations for Deep-Sea Mining;491
7.3.5.1;17.5.1 Collector Device;491
7.3.5.2;17.5.2 Surface Discharge;491
7.3.5.3;17.5.3 At-Sea Processing, Ore Transfer, and Transport;492
7.3.6;17.6 Environmental Management Plan for Deep-Sea Mining;492
7.3.7;17.7 International Regulating Agencies for Deep-Sea Mining;493
7.3.7.1;17.7.1 United Nations Convention on the Law of the Sea;493
7.3.7.2;17.7.2 International Seabed Authority;494
7.3.7.3;17.7.3 International Maritime Organization;494
7.3.7.4;17.7.4 World Meteorological Organization;494
7.3.8;17.8 Mitigation of Impacts Due to Different Activities;495
7.3.8.1;17.8.1 Components of Marine Mining and Their Mitigation Measures;495
7.3.8.2;17.8.2 Measures for Developing environmentally ‘Safe’ Mining System;498
7.3.8.3;17.8.3 Identification of Preservation Reference Zone (PRZ);498
7.3.8.4;17.8.4 Hazard Management;499
7.3.8.4.1;17.8.4.1 Human-Induced Hazards;499
7.3.8.4.2;17.8.4.2 Natural Hazards;500
7.3.9;17.9 Institutional Set-Up and EMP Framework;500
7.3.9.1;17.9.1 Establishment of Environmental Monitoring Office;500
7.3.9.2;17.9.2 Proposed Framework for EMP;501
7.3.10;17.10 Conclusions;502
7.3.11;References;503
7.3.11.1;Websites (Accessed Between 10 June 2012 and 20 July 2012);504
7.4;Chapter 18: The Crafting of Seabed Mining Ecosystem-Based Management;506
7.4.1;18.1 Introduction: 2025, the Optimistic;506
7.4.2;18.2 From Global to Local: An Imperfect But Forward-Thinking International Impetus;507
7.4.3;18.3 The Ecosystem Approach: The Dynamics of Societies and Ecosystems;510
7.4.4;18.4 The Ecosystem Approach in the Deep Sea;512
7.4.5;18.5 Building with Nature;513
7.4.6;18.6 New Challenges, New Forms of Governance;513
7.4.7;18.7 A Nested and Progressive Governance Approach Building on Existing Frameworks and Instruments;514
7.4.8;18.8 Ecologically or Biologically Significant Areas: An Inter-Institutional Process;516
7.4.9;18.9 Very Large Marine-Protected Areas: Experimenting Large-Scale Integrated Management;519
7.4.10;18.10 The Primacy of a Regional Approach;520
7.4.11;18.11 Knowledge and Expertise;520
7.4.12;18.12 Ocean Literacy;521
7.4.13;18.13 Conclusion: The Way Forward;522
7.4.14;References;524
8;Correction to: Composition, Formation, and Occurrence of Polymetallic Nodules;526
9;Index;527




