Buch, Englisch, 148 Seiten, Format (B × H): 148 mm x 210 mm, Gewicht: 225 g
ISBN: 978-3-8348-0992-6
Verlag: Vieweg+Teubner Verlag
Kenichi Shimizu investigates the limit of the two standard bootstrap techniques (the residual and the wild bootstrap) when these are applied to the conditionally heteroscedastic models, such as the ARCH and the GARCH models. The author shows that the wild bootstrap usually does not work well when one estimates conditional heteroscedasticity of Engle´s ARCH or Bollerslev´s GARCH models while the residual bootstrap works without problems. Together with the theoretical investigation simulation studies from the application of the proposed bootstrap methods are demonstrated.
Zielgruppe
Researchers and practitioners working in mathematical statistics, time series analysis, and risk modelling in engineering and finance
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Operations Research
- Wirtschaftswissenschaften Betriebswirtschaft Management Risikomanagement
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
Weitere Infos & Material
Bootstrap Does not Always Work.- Parametric AR(p)-ARCH(q) Models.- Parametric ARMA(p, q)- GARCH(r, s) Models.- Semiparametric AR(p)-ARCH(1) Models.




