Shunin / Bellucci / Gruodis | Nonregular Nanosystems | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band 26, 412 Seiten

Reihe: Lecture Notes in Nanoscale Science and Technology

Shunin / Bellucci / Gruodis Nonregular Nanosystems

Theory and Applications
1. Auflage 2018
ISBN: 978-3-319-69167-1
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark

Theory and Applications

E-Book, Englisch, Band 26, 412 Seiten

Reihe: Lecture Notes in Nanoscale Science and Technology

ISBN: 978-3-319-69167-1
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book presents a systemic view of nanophenomena in terms of disordered condensed media with characteristics arising at various hierarchical levels from nanoagents/nanoparticles through multiple technological interfaces to the creation of micro- or mesostructures with essential nanodimensional effects. These properties can be seen in various schemes for the functionalization of nanocarbon systems, namely, CNTs, GNRs, GNFs, carbon-based nanoaerogels, nanofoams, and so on, where nonregularities characterize surface nanointeractions and various nanointerconnects, resulting in both predictable and unpredictable effects. Beginning with nanosensing and finishing with other forms of functionalized nanomaterials, these effects will define the prospective qualities of future consumer nanoproducts and nanodevices. This book covers all aspects of nonregular nanosystems arising from the fundamental properties of disordered nanosized media, from electronic structure, surface nanophysics, and allotropic forms of carbon such as graphene and fullerenes including defect characterization, to spintronics and 3D device principles. Nonregular Nanosystems will be of interest to students and specialists in various fields of nanotechnology and nanoscience, experts on surface nanophysics and nanochemistry, as well as managers dealing with marketing of nanoproducts and consumer behavior research.

Shunin / Bellucci / Gruodis Nonregular Nanosystems jetzt bestellen!

Weitere Infos & Material


1;Preface;5
2;Contents;9
3;Chapter 1: Introduction to Non-regular Nanosystems;15
4;2: General Approach to the Description of Fundamental Properties of Disordered Nanosized Media;20
4.1;2.1 Introduction;20
4.2;2.2 Correlation of Atomic and Electronic Structures;23
4.3;2.3 Order and Disorder;26
4.4;2.4 Concepts of Modelling Atomic Nanostructures;31
4.5;2.5 Concepts of Nanoporous and Nanocomposite Materials;35
4.5.1;2.5.1 Nanoporous Materials;36
4.5.2;2.5.2 Aerogels;38
4.5.3;2.5.3 Nanocomposites;39
4.6;2.6 Scaling in Functional Nanomedia;39
4.7;2.7 Concluding Remarks;41
4.8;References;42
5;3: Potentials and Electronic Structure Calculations of Non-regular Nanosystems;45
5.1;3.1 Introduction;45
5.2;3.2 Atomic Potential Functions;45
5.2.1;3.2.1 Construction of Atomic Potential Functions;46
5.3;3.3 `Crystalline´ Potentials;51
5.4;3.4 Potentials of Charged Defects;53
5.5;3.5 Electronic Structure and Total Energy: Atoms, Molecules and Nanoclusters;56
5.6;3.6 Interatomic Interaction Potentials and Force Calculations;61
5.7;3.7 Multiple Scattering Theory and Effective Media Approach;62
5.7.1;3.7.1 Methods of Electronic Structure Calculation of Non-regular Condensed Materials;63
5.7.2;3.7.2 Non-regular Condensed Medium: `Liquid Metal´ Model;66
5.7.3;3.7.3 A Model of a Non-regular Material in the Cluster Approach;71
5.7.4;3.7.4 Scattering on the General Type Potential;72
5.8;3.8 Monoatomic Nanosystems: Nano-Si, Nano-Se;74
5.8.1;3.8.1 Production of Nanosilicon;74
5.8.1.1;3.8.1.1 Nanosilicon Applications;75
5.8.1.2;3.8.1.2 Other Nanosilicon Applications;75
5.8.2;3.8.2 Nanosilicon: Calculations of Electronic Structure;76
5.8.3;3.8.3 Selenium Versus Nano-selenium;78
5.8.3.1;3.8.3.1 General Se Applications;79
5.8.3.2;3.8.3.2 Nano-selenium in the Environment;79
5.8.3.3;3.8.3.3 Health Effects of Nano-selenium;80
5.8.4;3.8.4 Nano-selenium: Calculations of Electronic Structure;80
5.9;3.9 Nanocompounds: Nanochalcogenides;81
5.9.1;3.9.1 Binary and Ternary Chalcogenide Glassy Systems;83
5.10;References;86
6;4: Scattering Processes in Nanocarbon-Based Nanointerconnects;89
6.1;4.1 Non-regularities in Nanointerconnects;90
6.1.1;4.1.1 Scattering Processes in Nanocarbon-Based Nanointerconnects;92
6.2;4.2 Electronic Structure Calculations of Nanocarbon-Based Interfaces;93
6.3;4.3 Electromagnetics of CNT and Graphene-Based Systems;98
6.3.1;4.3.1 `Liquid Metal´ Model for CNT-Metal Junction: CNT-Ni case;98
6.3.2;4.3.2 Model of `Effective Bonds´ for Simulations of CNT-Me and GNR-Me Junctions;100
6.3.3;4.3.3 SWCNT and SL and ML GNR Simulations;101
6.3.4;4.3.4 Parametric Calculations of CNT-Me Interconnect Resistances;108
6.3.5;4.3.5 Resistance MWCNT-Me Junctions;108
6.3.6;4.3.6 Current Loss Between the Adjacent Shells Inside the MWCNT;112
6.3.7;4.3.7 Resistances and Capacitances of SL GNR-Me, ML GNR-Me Interconnects;118
6.3.8;4.3.8 Frequency Properties of CNT-Me and GNR-Me Interconnects;119
6.3.9;4.3.9 Concluding Remarks;122
6.4;References;124
7;5: Surface Nanophysics: Macro-, Meso-, Micro- and Nano-approaches;126
7.1;5.1 Surface: Thermodynamics, Anisotropy;126
7.2;5.2 Physical and Chemical Adsorption, Adsorption Kinetics;131
7.3;5.3 Gibbs Adsorption Isotherms;137
7.4;5.4 Hydrogen Adsorption;143
7.5;5.5 Electronic Structure of Surface;144
7.6;5.6 Surface Plasmon Resonance;151
7.7;5.7 Interaction of Light and Nanoparticle;152
7.8;5.8 Nanoshells;155
7.9;5.9 Organic-Nonorganic Interfaces;156
7.10;References;156
8;6: Classification and Operating Principles of Nanodevices;158
8.1;6.1 Classification;158
8.1.1;6.1.1 Correlations of the Fundamental Properties of Non-regular Materials;158
8.1.2;6.1.2 Nanosensoring Paradigm;161
8.2;6.2 Physical Nanosensors;163
8.3;6.3 Chemical Nanosensors;174
8.4;6.4 Bio-nanosensors;176
8.5;6.5 Memory Nanodevices;178
8.6;6.6 Biomolecular Rotary Machines;188
8.7;6.7 Nanotransducers;189
8.7.1;6.7.1 Optical Nanotransducers;191
8.7.2;6.7.2 Mechanical Nanotransducers;193
8.7.3;6.7.3 Electrochemical Nanotransducers;193
8.7.4;6.7.4 Magnetic Nanotransducers;196
8.8;6.8 Nanoaerogels and Nanofoams;198
8.8.1;6.8.1 Introduction to Aerogels;198
8.8.2;6.8.2 Aerogels Forms and Characterization;200
8.8.3;6.8.3 Aerogels Commercialization;202
8.8.4;6.8.4 Functionalization;203
8.9;6.9 Biocomposites;204
8.9.1;6.9.1 Biocomposite Concepts and Definitions;204
8.9.2;6.9.2 Bio-nanocomposites from Renewable Resources;204
8.9.3;6.9.3 Bio-nanocomposite Applications;208
8.10;References;210
9;7: CNT and Graphene Growth: Growing, Quality Control, Thermal Expansion and Chiral Dispersion;218
9.1;7.1 The Iijima Method for Growing CNTs and Graphene;218
9.1.1;7.1.1 Arc Discharge;218
9.1.2;7.1.2 Purification;220
9.2;7.2 Arc Discharge and Induced Non-regularities;221
9.3;7.3 Laser Ablation and Self-Organization of Matter;223
9.3.1;7.3.1 Laser Ablation;223
9.3.2;7.3.2 Chemical Vapour Deposition;225
9.4;7.4 Simulations of Growth: Sporadic and Stimulated;226
9.4.1;7.4.1 CNT Growth Mechanism;226
9.4.2;7.4.2 The Tip-Growth Mechanism;227
9.4.3;7.4.3 The Base-Growth Mechanism;227
9.4.4;7.4.4 Several Control Strategies;229
9.4.5;7.4.5 Quality Control;230
9.5;7.5 Graphene Growth and Technological Defects;232
9.5.1;7.5.1 Defects in Graphene;233
9.6;7.6 Simulation of Magnetically Stimulated CVD CNT Growth;235
9.6.1;7.6.1 Research Motivation;236
9.6.2;7.6.2 CNT Growth in the Chemical Vapour Deposition Process Based on Metal Nanoparticles;239
9.6.3;7.6.3 CVD Process Analysis;240
9.6.4;7.6.4 Advantages of CVD;242
9.6.5;7.6.5 CNT Precursors;244
9.6.6;7.6.6 CNT Growth Control;244
9.6.7;7.6.7 Magnetically Stimulated CNT CVD Growth on Fe-Pt Catalysts;246
9.6.8;7.6.8 Effective Bonds Model for CNT-Fe-Pt Interconnect Electromagnetic Properties;246
9.6.9;7.6.9 CNT-FexPt1-x Interconnect Formation;248
9.6.10;7.6.10 Magnetic Properties of Fe-Pt Alloys;251
9.6.11;7.6.11 Magnetically Stimulated CNT Growth;252
9.6.12;7.6.12 Model of CVD CNT Growth with the Probabilistically Predefined Morphology;254
9.7;References;256
10;8: Graphene, Fullerenes, Carbon Nanotubes: Electronic Subsystem;263
10.1;8.1 Carbon: Allotropic Forms;263
10.2;8.2 Carbon Derivatives: Formation of Electronic System;273
10.3;8.3 Graphene Electronic Structure;275
10.4;8.4 Pi-Zones for Nanotubes (n,0), Nanotubes (n,n);278
10.5;8.5 Nanotubes: Electronic Angular Momentum and Spin-Dependent Properties;282
10.6;8.6 Nanotubes of the Metal Type and of the Semiconductor Type;284
10.7;8.7 Chemistry of Nanotubes: Catalysis and Toxicity;286
10.8;8.8 The Influence of Defects on Electrical, Mechanical and Thermal Properties of Graphene;289
10.9;8.9 Defected Nanocarbon Systems;290
10.10;References;292
11;9: Spintronics and Nanomemory Systems;297
11.1;9.1 Spin Transport Fundamentals;297
11.2;9.2 Magnetoresistance Nanodevices;300
11.2.1;9.2.1 Spin Valve Concepts;300
11.2.2;9.2.2 Spintronic Device Descriptions;302
11.3;9.3 Magnetic Disorder and Spin Transport;303
11.3.1;9.3.1 Magnetic Disorder in Fe-Pt Nanodrops;304
11.3.1.1;9.3.1.1 Diluted Ferromagnets with the Nearest Neighbour Interaction;304
11.3.1.2;9.3.1.2 Bethe Lattice of the Spin System;307
11.3.1.3;9.3.1.3 Spin Waves;308
11.3.1.4;9.3.1.4 Spin Injection and Detection;310
11.3.1.5;9.3.1.5 Spin Precession;313
11.3.1.6;9.3.1.6 Spin Relaxation;314
11.4;9.4 Concluding Remarks;315
11.5;References;315
12;10: Nanosensor Systems Simulations;318
12.1;10.1 Physical and Chemical Nanosensors;319
12.1.1;10.1.1 Conductivity as a Tool of Nanosensor Systems;319
12.2;10.2 Bio-nanosensors: Polymer Nanoporous Model Structures;324
12.2.1;10.2.1 Biosensor Model Testing and Experimental Results;325
12.3;10.3 Nanocomposite-Based Nanosensoring Devices;329
12.3.1;10.3.1 Real-Time Polymer Nanocomposite-Based Physical Nanosensors;329
12.3.1.1;10.3.1.1 Methods and Models;329
12.3.1.2;10.3.1.2 Conductivity Mechanisms;331
12.3.2;10.3.2 Models of CNT- and GNR-Based Nanocomposites;333
12.3.3;10.3.3 Simulation of Stress- and Temperature-Induced Resistance of Carbon-Based Nanocomposite Sensors: Results and Discussions;336
12.3.3.1;10.3.3.1 Modelling and Experimental Results;339
12.4;10.4 Concluding Remarks;340
12.5;References;342
13;11: Nanotechnology Application Challenges: Nanomanagement, Nanorisks and Consumer Behaviour;345
13.1;11.1 Consumer Insights into Nanotechnology: Introduction to Rational Consumerism and Consumer Behaviour;345
13.2;11.2 Nanoscience and Nanotechnology: What Is Special About `Nano´ and Why Should Consumers Be Informed?;347
13.3;11.3 Basic Categories of Nanotechnology-Based Consumer Products on the Market and Consumer Awareness;351
13.4;11.4 Towards an Open Dialogue with Consumers on the Benefits and Risks of Nanotechnology-Engaged Products;365
13.5;11.5 New Technologies and Responsible Scientific Consumption in Constructing Consumer Identity;371
13.6;11.6 Knowledge Management as a Means of Social Change: Who Needs Nanotechnology Education?;374
13.7;11.7 Convergence of Science, Technology and Society: Nano-Bio-Info-Cogno-Socio-Humanosciences and Technologies - A Way to NBIC...;379
13.8;11.8 Global Citizenship Competence: The Vision for Educational Change;384
13.9;11.9 Nanochallenges: Nanomanagement, Nanoeducation, Nanothinking and Public Participatory Technology Assessment (pTA);386
13.9.1;11.9.1 Nanomanagement: Risks Versus Benefits;388
13.9.2;11.9.2 Nanoeducation and the Global Consciousness;391
13.9.3;11.9.3 Nanothinking as an Educational Concept of the Twenty-First Century;393
13.9.4;11.9.4 Public Participatory Technology Assessment (pTA) in Risk Management;395
13.10;11.10 Concluding Remarks;397
13.11;References;400
14;Index;404



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.