E-Book, Deutsch, 328 Seiten, eBook
Reihe: VDI-Buch
Siebertz / Bebber / Hochkirchen Statistische Versuchsplanung
2010
ISBN: 978-3-642-05493-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Design of Experiments (DoE)
E-Book, Deutsch, 328 Seiten, eBook
Reihe: VDI-Buch
ISBN: 978-3-642-05493-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Die statistische Versuchsplanung (Design of Experiment, DoE) ist ein Verfahren zur Analyse von (technischen) Systemen. Dieses Verfahren ist universell einsetzbar und eignet sich sowohl zur Produkt- als auch zur Prozessoptimierung, insbesondere dann, wenn viele Einflussgrößen zu berücksichtigen sind. Hauptanliegen der Autoren ist es, die Planung und Durchführung von systematischen Versuchsreihen mit engem Praxisbezug darzustellen. Industriespezifische Probleme illustrieren sie anhand zahlreicher Fallbeispiele.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Weitere Infos & Material
Grundlagen.- Versuchspläne.- Kontrollverfahren.- Statistische Modellbildung.- Varianten der statistischen Versuchsplanung.- Computer-Experiment.- Versuchspläne für komplexe Zusammenhänge.- Metamodelle.- Optimierung.- Sensitivitätsanalyse.- Strategie.
"Kapitel 2 Versuchspläne (S. 25-26)
2.1 Einleitung
Oft wird die statistische Versuchsplanung fast ausschließlich mit der Konstruktion von Versuchsplänen in Verbindung gebracht. In der Tat ist dies ein sehr wichtiger und eigenständiger Teil der Methode. Im Gegensatz zu den Anfängen der statistischen Versuchsplanung, bieten die verfügbaren Auswerteprogramme eine hervorragende Unterstützung mit vorkonfektionierten Feldern und beherrschen vielfach auch die Erstellung maßgeschneiderter Versuchspläne für den speziellen Anwendungsfall. Wichtig ist nach wie vor die Vermittlung der Strategien hinter den jeweiligen Feldkonstruktionen, damit der Anwender weiß, welche Auswahlmöglichkeit besteht. Nach Anwendungsfall gruppiert, behandelt dieses Kapitel alle gängigen Feldkonstruktionen.
Zunächst stehen Screening-Versuchspläne auf dem Programm, mit denen eine hohe Zahl von Faktoren untersucht werden kann. Detailuntersuchungen werden oft mit einem quadratischen Beschreibungsmodell durchgeführt, um den vorhandenen Nichtlinearitäten Rechnung zu tragen. Auch diese Modelle haben Grenzen, was in einem eigenen Abschnitt diskutiert wird. Mischungspläne verwendet man oft in der Verfahrenstechnik, denn sie berücksichtigen die Randbedingung, dass bei Mischungen die Summe aller Anteile der beteiligten Komponenten 100% ergibt.
In Sonderfällen sind maßgeschneiderte Versuchspläne erforderlich. Für die automatische Erstellung dieser Versuchspläne gibt es mehrere Optimierungskriterien, die in einem eigenen Abschnitt vorgestellt werden. Als kleiner Exkurs in die Geschichte der Versuchsplanung bilden die umstrittenen Latin Squares den Abschluss dieses Kapitels. 2.2 Screening Versuchspläne Zu den wesentlichen Stärken der statistischen Versuchsplanung gehört Effizienz, also die Möglichkeit, mit minimalem Versuchsaufwand viele Faktoren zu untersuchen. Hierzu gibt es speziell konstruierte Versuchspläne, die nahezu alle in der Praxis auftretenden Anforderungen abdecken und eine sichere Analyse gewährleisten. Nur in Ausnahmefällen ist eine Sonderkonstruktion nötig. In diesem Abschnitt wird zunächst die grundsätzliche Strategie dieser Versuchspläne erläutert. Anschließend erfolgt eine Vorstellung der gebräuchlichen Feldkonstruktionen mit Direktvergleich der Ergebnisse anhand eines Fallbeispiels.
2.2.1 Konzept
Bei einer hohen Zahl von Faktoren ist der Vollfaktorplan nicht mehr durchführbar. Screening Versuchspläne haben die Aufgabe, bei minimalem Informationsverlust mit möglichst wenigen Versuchen auszukommen. In der Literatur finden sich dafür verschiedene Bezeichnungen, unter anderem: screening designs, fractional factorial designs, Screening Versuchspläne, teilfaktorielle Versuchspläne, Teilfaktorpläne oder fraktionelle faktorielle Versuchspläne.
Grundsätzlich stellt der Versuchsplan ein lineares Gleichungssystem dar. Jeder Versuch liefert eine Gleichung. Daher ist es möglich, Beschreibungsmodelle anzupassen, deren Parameterzahl der Zahl der Versuchsläufe entspricht. Günstiger ist jedoch ein Überschuss an Gleichungen. Dies hat den Vorteil, dass eine Kontrolle des Beschreibungsmodells möglich ist. Einzelheiten dazu finden sich im Kapitel Kontrollverfahren."




