Singh | Machine Learning with PySpark | E-Book | sack.de
E-Book

E-Book, Englisch, 223 Seiten, eBook

Singh Machine Learning with PySpark

With Natural Language Processing and Recommender Systems
1. Auflage 2018
ISBN: 978-1-4842-4131-8
Verlag: APRESS
Format: PDF
Kopierschutz: 1 - PDF Watermark

With Natural Language Processing and Recommender Systems

E-Book, Englisch, 223 Seiten, eBook

ISBN: 978-1-4842-4131-8
Verlag: APRESS
Format: PDF
Kopierschutz: 1 - PDF Watermark



Build machine learning models, natural language processing applications, and recommender systems with PySpark to solve various business challenges. This book starts with the fundamentals of Spark and its evolution and then covers the entire spectrum of traditional machine learning algorithms along with natural language processing and recommender systems using PySpark.  Machine Learning with PySpark shows you how to build supervised machine learning models such as linear regression, logistic regression, decision trees, and random forest. You’ll also see unsupervised machine learning models such as K-means and hierarchical clustering. A major portion of the book focuses on feature engineering to create useful features with PySpark to train the machine learning models. The natural language processing section covers text processing, text mining, and embedding for classification.  After reading thisbook, you will understand how to use PySpark’s machine learning library to build and train various machine learning models. Additionally you’ll become comfortable with related PySpark components, such as data ingestion, data processing, and data analysis, that you can use to develop data-driven intelligent applications. What You Will Learn Build a spectrum of supervised and unsupervised machine learning algorithms Implement machine learning algorithms with Spark MLlib libraries Develop a recommender system with Spark MLlib libraries Handle issues related to feature engineering, class balance, bias and variance, and cross validation for building an optimal fit modelWho This Book Is For  Data science and machine learning professionals.
Singh Machine Learning with PySpark jetzt bestellen!

Zielgruppe


Professional/practitioner


Autoren/Hrsg.


Weitere Infos & Material


Chapter 1: Evolution of Data, - Chapter 2: Introduction to Machine Learning. - Chapter 3: Data Processing.  - Chapter 4: Linear Regression. - Chapter 5: Logistic Regression. - Chapter 6: Random Forests. - Chapter 7: Recommender Systems. - Chapter 8: Clustering. - Chapter 9: Natural Language Processing.


Pramod Singh is an established data scientist with over eight years of experience in data and solving business challenges. He has worked in organizations such as Infosys, Tally and SapientRazorfish. Also, president of a data science meet-up group and regular speaker at various webinars. Recently spoke at major conference: GIDS 2018 and presented a session on “Sequence Embedding in Spark” which was well received. He has an online Udemy course on machine learning.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.