Stahlbock / Crone / Lessmann | Data Mining | E-Book | sack.de
E-Book

E-Book, Englisch, Band 8, 387 Seiten, eBook

Reihe: Annals of Information Systems

Stahlbock / Crone / Lessmann Data Mining

Special Issue in Annals of Information Systems
1. Auflage 2009
ISBN: 978-1-4419-1280-0
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark

Special Issue in Annals of Information Systems

E-Book, Englisch, Band 8, 387 Seiten, eBook

Reihe: Annals of Information Systems

ISBN: 978-1-4419-1280-0
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



Over the course of the last twenty years, research in data mining has seen a substantial increase in interest, attracting original contributions from various disciplines including computer science, statistics, operations research, and information systems. Data mining supports a wide range of applications, from medical decision making, bioinformatics, web-usage mining, and text and image recognition to prominent business applications in corporate planning, direct marketing, and credit scoring. Research in information systems equally reflects this inter- and multidisciplinary approach, thereby advocating a series of papers at the intersection of data mining and information systems research.This special issue of Annals of Information Systems contains original papers and substantial extensions of selected papers from the 2007 and 2008 International Conference on Data Mining (DMIN’07 and DMIN’08, Las Vegas, NV) that have been rigorously peer-reviewed. The issue brings together topics on both information systems and data mining, and aims to give the reader a current snapshot of the contemporary research and state of the art practice in data mining.
Stahlbock / Crone / Lessmann Data Mining jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Data Mining and Information Systems: Quo Vadis?.- Confirmatory data analysis.- Response-Based Segmentation Using Finite Mixture Partial Least Squares.- Knowledge discovery from supervised learning.- Building Acceptable Classification Models.- Mining Interesting Rules Without Support Requirement: A General Universal Existential Upward Closure Property.- Classification Techniques and Error Control in Logic Mining.- Classification analysis.- An Extended Study of the Discriminant Random Forest.- Prediction with the SVM Using Test Point Margins.- Effects of Oversampling Versus Cost-Sensitive Learning for Bayesian and SVM Classifiers.- The Impact of Small Disjuncts on Classifier Learning.- Hybrid data mining procedures.- Predicting Customer Loyalty Labels in a Large Retail Database: A Case Study in Chile.- PCA-based Time Series Similarity Search.- Evolutionary Optimization of Least-Squares Support Vector Machines.- Genetically Evolved kNN Ensembles.- Web-mining.- Behaviorally Founded Recommendation Algorithm for Browsing Assistance Systems.- Using Web Text Mining to Predict Future Events: A Test of the Wisdom of Crowds Hypothesis.- Privacy-preserving data mining.- Avoiding Attribute Disclosure with the (Extended) p-Sensitive k-Anonymity Model.- Privacy-Preserving Random Kernel Classification of Checkerboard Partitioned Data.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.