Statulevicius / Saulis | Limit Theorems for Large Deviations | Buch | 978-0-7923-1475-2 | sack.de

Buch, Englisch, Band 73, 232 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1150 g

Reihe: Mathematics and its Applications

Statulevicius / Saulis

Limit Theorems for Large Deviations


1991
ISBN: 978-0-7923-1475-2
Verlag: Springer Netherlands

Buch, Englisch, Band 73, 232 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1150 g

Reihe: Mathematics and its Applications

ISBN: 978-0-7923-1475-2
Verlag: Springer Netherlands


"Et moi,.• si j'avait su comment en revenir. One service mathematics has rendered the je n'y serais poin t aile.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell O. H ea viside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non­ Iinearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service. topology has rendered mathematical physics.': 'One service logic has rendered com­ puter science.'; 'One service category theory has rendered mathematics.'. All arguably true. And all statements obtainable this way form part of the raison d 'e1:re of this series.

Statulevicius / Saulis Limit Theorems for Large Deviations jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1. The main notions.- 2. The main lemmas.- 2.1. General lemmas on the approximation of distribution of an arbitrary random variable by the normal distribution.- 2.2. Proof of lemmas 2.1—2.4.- 3. Theorems on large deviations for the distributions of sums of independent random variables.- 3.1. Theorems on large deviations under Bernstein's condition.- 3.2. A theorem of large deviations in terms of Lyapunov's fractions.- 4. Theorems of large deviations for sums of dependent random variables.- 4.1. Estimates of the kth order centered moments of random processes with mixing.- 4.2. Estimates of mixed cumulants of random processes with mixing.- 4.3. Estimates of cumulants of sums of dependent random variables.- 4.4. Theorems and inequalities of large deviations for sums of dependent random variables.- 5. Theorems of large deviations for polynomial forms, multiple stochastic integrals and statistical estimates.- 5.1. Estimates of cumulants and theorems of large deviations for polynomial forms, polynomial Pitman estimates and U-statistics.- 5.2. Cumulants of multiple stochastic integrals and theorems of large deviations.- 5.3. Large deviations for estimates of the spectrum of a stationary sequence.- 6. Asymptotic expansions in the zones of large deviations.- 6.1. Asymptotic expansion for distribution density of an arbitrary random variable.- 6.2. Estimates for characteristic functions.- 6.3. Asymptotic expansion in the Cramer zone for distribution density of sums of independent random variables.- 6.4. Asymptotic expansions in integral theorems with large deviations.- 7. Probabilities of large deviations for random vectors.- 7.1. General lemmas on large deviations for a random vector with regular behaviour of cumulants.- 7.2. Theorems on large deviations for sums of randomvectors and quadratic forms.- Appendices.- Appendix 1. Proof of inequalities for moments and Lyapunov's fractions.- Appendix 2. Proof of the lemma on the representation of cumulants.- Appendix 3. Leonov - Shiryaev’s formula.- References.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.