E-Book, Englisch, 67 Seiten, eBook
Suryanarayana / Mistry Principal Component Regression for Crop Yield Estimation
1. Auflage 2016
ISBN: 978-981-10-0663-0
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 67 Seiten, eBook
Reihe: SpringerBriefs in Applied Sciences and Technology
ISBN: 978-981-10-0663-0
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1. Introduction
1.1 Climate
1.2 Climate Change
1.3 Impact of Climate Change in Global Context
1.4 Impact of Climate Change on Agriculture
1.5 Climatological Parameters Affecting Crop Yeild
1.5 Downscaling1.6 Types of Downscaling
1.7 Multiple Linear Regression
1.8 Principal Component Analysis
1.9 Objectives
2.Principal Component Analysis
2.1 Statistical Downscaling Methods
2.2 Principal Component Analysis
2.2.1 Advantages of PCA
2.2.2 Disadvantages of PCA
2.2.3 Applications of Principal Components Analysis2.3 Principal Component Regression
2.3.1 Calculating Principal Components
2.3.2 Rules for Retaining Principal Components
2.3.3 Development of Principal Component Regression
3. Review of Literature3.1 Review of Works on Climate Change
3.2 Review of Works on Downscaling Techniques
3.3 Review of Works on Multiple Linear Regression
3.4 Review of Works on Principal Component Analysis/Regression
4. Study Area and Data Analysis
4.1 Study Area
4.2 Data Analysis
5. Methodology
5.1 Multiple Linear Regression Model
5.2 Principal Component Regression Model
5.3 Performance Indices5.4 Analysis of MLR and PCR Models
6. Results and Analysis
6.1 MLR Model
6.1.1 MLR During Training
6.1.2 MLR During Validation
6.2 PCR Model
6.2.1 PCR During Training
6.2.2 PCR During Validation
6.3 Comparison of MLR and PCR Models Using Performance Indices
6.4 Analysis of PCR Model
7. Conclusions



