Tan | A Course in Regression and Smoothing Methods | Buch | 978-1-041-15277-4 | www.sack.de

Buch, Englisch, 296 Seiten, Format (B × H): 156 mm x 234 mm

Reihe: Chapman & Hall/CRC Texts in Statistical Science

Tan

A Course in Regression and Smoothing Methods


1. Auflage 2026
ISBN: 978-1-041-15277-4
Verlag: Taylor & Francis

Buch, Englisch, 296 Seiten, Format (B × H): 156 mm x 234 mm

Reihe: Chapman & Hall/CRC Texts in Statistical Science

ISBN: 978-1-041-15277-4
Verlag: Taylor & Francis


This book provides a concise account of four components of regression and smoothing methods: linear regression, generalized linear models, spline and kernel methods, and generalized linear mixed models. By bringing together parametric regression and nonparametric smoothing methods, the book emphasizes connections across methods, enabling readers to recognize common structures and to adapt techniques to new problems.

While standard texts often focus on the application of statistical methods from a user's perspective, this book covers the foregoing topics from a developer's perspective, with systematic attention to the mathematical, statistical, and computational ideas and results that underlie the methods. The distinction is analogous to that between a user’s manual and a developer’s manual for software: the goal is not only to demonstrate how to apply the methods, but also how they are derived and implemented.

Assuming a basic knowledge of undergraduate statistics, the book is intended primarily as a graduate textbook for teaching and studying regression and smoothing methods. It serves as a useful resource for students and researchers in Statistics, Data Science, and related fields who wish to move beyond routine application and study modern regression and smoothing methods at a more advanced level.

Key Features:

- Focuses on core, representative topics in regression and smoothing while addressing important methodological issues often omitted at the introductory level.

- Presents regression and smoothing methods in a coherent, interconnected manner that highlights their common structures and relationships.

- Explains and demonstrates numerical algorithms in a self-contained way, with R code that implements the methods directly rather than relying on existing packages.

- Reinforces learning through not only end-of-chapter exercises but also questions and exercises integrated into the main text.

Tan A Course in Regression and Smoothing Methods jetzt bestellen!

Zielgruppe


Academic


Autoren/Hrsg.


Weitere Infos & Material


Preface 1 Linear regression 2 Generalized linear regression 3 Smoothing methods: Splines and kernels 4 Generalized linear mixed regression Bibliography Index


Zhiqiang Tan is a Distinguished Professor in the Department of Statistics, Rutgers University. His research and teaching interests include Monte Carlo methods, causal inference, statistical learning, and related areas. He is a Fellow of the American Statistical Association, a Fellow of the Institute of Mathematical Statistics, and an Elected Member of the International Statistical Institute.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.