Tan / Shi | Data Mining and Big Data | Buch | 978-981-967174-8 | www.sack.de

Buch, Englisch, 315 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 511 g

Reihe: Communications in Computer and Information Science

Tan / Shi

Data Mining and Big Data

9th International Conference, DMBD 2024, Ho Chi Minh City, Vietnam, December 13-17, 2024, Proceedings, Part I
Erscheinungsjahr 2025
ISBN: 978-981-967174-8
Verlag: Springer

9th International Conference, DMBD 2024, Ho Chi Minh City, Vietnam, December 13-17, 2024, Proceedings, Part I

Buch, Englisch, 315 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 511 g

Reihe: Communications in Computer and Information Science

ISBN: 978-981-967174-8
Verlag: Springer


This two-volume set, CCIS 2356 and CCIS 2357, constitutes the refereed proceedings of the 9th International Conference on Data Mining and Big Data, DMBD 2024, held in Ho Chi Minh City, Vietnam, in December 2024.

The 46 full papers presented in these volumes were carefully reviewed and selected from 93 submissions. They are organized under the following topical sections:

Part I : Machine Learning Methods; Data Mining Methods; Detection Methods.

Part II : Clustering Methods; Knowledge Graph; UAV Applications; Large Languange Models and Applications; Multi-Criterion Models and Applications.

Tan / Shi Data Mining and Big Data jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


.- Machine Learning Methods.

.- Firework Swarm Learning (FSL): A Universal Machine Learning Framework.

.- AdaBoost Integration Framework Based on Multiple Filters.

.- Privacy-Preserving Federated Learning Scheme for Power Loads Forecasting.

.- From Big Data to Smart Data: Effective Subset Generation for Machine Learning Model Training.

.- RAGtag: A Retrieval-Augmented Generation-Based Topic Modeling Framework.

.- A Geographical Location Mining Model for Users on Social Media Platforms.

.- Granular-ball Computing based Fireworks Algorithm for Global Optimization of Multi-modal Functions.

.- Probabilistic -greedy Strategy for Exploitation in Homogeneous Multi-agent Reinforcement Learning.

.- Enterprise Credit Risk Assessment Based on Rotate Forest Feature Transformation and Heterogeneous Ensemble Learning.

.- Data Mining Methods.

.- A Neural Network Approach for Predicting Crop Import Prices: A Case Study of Qatar.

.- Global and Local Enhanced Crow Search Algorithm for Weapon Target Assignment.

.- Optimization Algorithm of Corpse Combustion Process Based on Improved Genetic Algorithm.

.- Contextual State Pattern Determination-Based Heuristic Program Synthesis.

.- Iteratively Measuring Capital Liberalization in Stationary State on PageRank.

.- Trends and Developments in Online Education Research from a Highly Cited Literature Perspective: A Bibliometric and Visualization Analysis.

.- The Multifaceted Impacts of Government Policy on Pharma Firms Based on Forecasting: Insights from a Case Study on Centralized Drug Procurement in China.

.- Meta-Analysis of Correlations between Software Engineering Metrics – The case of Java.

.- Detection Methods.

.- Distribution Adaptive-based Defect Detection Prior to Ship Hull Welding.

.- Small Object Detection Algorithm in Aerial Images Based on Multi-Level Feature Fusion.

.- Attention-based Early and Late Fusion of Audio Visual for Deepfake Detection.

.- A Graph Neural Network Approach for Early Plant Disease Detection.

.- Wildfire Smoke Detection based on Motion Aware and Feature Enhancement.

.- Underwater Multi-objective Detection by Using Swin Transformer Based YOLO Network.

.- Comparative Analysis of YOLOv8 and DeepLabv3+ on WildScenes Dataset: Evaluating mIoU Performance.

.- UNet++ cell segmentation and counting algorithm based on morphology and convex hull defect detection.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.