E-Book, Englisch, Band 7, 412 Seiten
Tenne / Goh Computational Intelligence in Optimization
1. Auflage 2010
ISBN: 978-3-642-12775-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Applications and Implementations
E-Book, Englisch, Band 7, 412 Seiten
Reihe: Adaptation, Learning, and Optimization
ISBN: 978-3-642-12775-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
This collection of recent studies spans a range of computational intelligence applications, emphasizing their application to challenging
real-world problems. Covers Intelligent agent-based algorithms, Hybrid intelligent systems, Machine learning and more.
Autoren/Hrsg.
Weitere Infos & Material
1;0007;1
2;Preface;6
3;Acknowledgement;10
4;Contents;11
5;New Hybrid Intelligent Systems to Solve Linear and Quadratic Optimization Problems and Increase Guaranteed Optimal Convergence Speed of Recurrent ANN;19
5.1;Introduction;19
5.2;Neural Network of Maa and Shanblatt: Two-Phase Optimization;22
5.3;Hybrid Intelligent System Description;25
5.3.1;Method of Tendency Based on the Dynamics in Space-Time (TDST);27
5.3.2;Method of Tendency Based on the Dynamics in State-Space (TDSS);31
5.4;Case Studies;34
5.4.1;Case 1: Mathematical Linear Programming Problem – Four Variables;34
5.4.2;Case 2: Mathematical Linear Programming Problem – Eleven Variables;34
5.4.3;Case 3: Mathematical Quadratic Programming Problem – Three Variables;36
5.5;Simulations;37
5.6;Conclusion;41
5.7;References;43
6;A Novel Optimization Algorithm Based on Reinforcement Learning;45
6.1;Introduction;45
6.2;Optimization Algorithm;48
6.2.1;Basic Search Procedure;48
6.2.2;Extracting Historical Information by Weighted Optimized Approximation;48
6.2.3;Predicting New Step Sizes;54
6.2.4;Stopping Criterion;55
6.2.5;Optimization Algorithm;56
6.3;Simulation and Discussion;57
6.3.1;Finding Global Minimum of a Multi-variable Function;57
6.3.2;Optimization of Weights in Multi-layer Perceptron Training;60
6.3.3;Micro-saccade Optimization in Active Vision for Machine Intelligence;61
6.4;Conclusions;63
6.5;References;64
7;The Use of Opposition for Decreasing Function Evaluations in Population-Based Search;66
7.1;Introduction;66
7.2;Theoretical Motivations;67
7.2.1;Definitions and Notations;68
7.2.2;Consequences of Opposition;69
7.2.3;Lowering Function Evaluations;70
7.2.4;Comparison to Existing Methods;71
7.3;Algorithms;72
7.3.1;Differential Evolution;73
7.3.2;Opposition-Based Differential Evolution;74
7.3.3;Population-Based Incremental Learning;74
7.3.4;Oppositional Population-Based Incremental Learning;75
7.4;Experimental Setup;76
7.4.1;Evolutionary Image Thresholding;76
7.4.2;Parameter Settings and Solution Representation;80
7.5;Experimental Results;81
7.5.1;ODE;81
7.5.2;OPBIL;82
7.6;Conclusion;85
7.7;References;86
8;Search Procedure Exploiting Locally Regularized Objective Approximation: A Convergence Theorem for Direct Search Algorithms;89
8.1;Introduction;89
8.2;The Search Procedure;90
8.3;Zangwill’s Method to Prove Convergence;91
8.4;The Main Result;93
8.4.1;Closedness of the Algorithmic Transformation;94
8.4.2;A Perturbation in the Line Search;96
8.5;The Radial Basis Appproximation;103
8.5.1;Detecting Dense Regions;103
8.5.2;Regularization Training;104
8.5.3;Choice of the Regularization Parameter $\lambda$ Value;106
8.5.4;Error Bounds for Radial Basis Approximation;107
8.6;Numerical Results;110
8.6.1;Test Problems;110
8.6.2;Results;111
8.7;Summary;115
8.8;References;118
9;Optimization Problems with Cardinality Constraints;120
9.1;Introduction;120
9.2;Approximate Methods for the Solution of Optimization Problems with Cardinality Constrains;123
9.2.1;Simulated Annealing;123
9.2.2;Genetic Algorithms;125
9.2.3;Estimation of Distribution Algorithms;126
9.3;Benchmark Optimization Problems with Cardinality Constraints;128
9.3.1;The Knapsack Problem;129
9.3.2;Ensemble Pruning;131
9.3.3;Portfolio Optimization with Cardinality Constraints;134
9.3.4;Index Tracking by Partial Replication;137
9.3.5;Sparse Principal Component Analysis;139
9.4;Conclusions;142
9.5;References;143
10;Learning Global Optimization through a Support Vector Machine Based Adaptive Multistart Strategy;146
10.1;Introduction and Background Research;147
10.2;Global Optimization with Support Vector Regression Based Adaptive Multistart (GOSAM);149
10.3;Experimental Results;151
10.3.1;One Dimensional Wave Function;152
10.3.2;Two Dimensional Case: Ackley’s Function;155
10.3.3;Comparison with PSO and GA on Higher Dimensional Problems;156
10.4;Extension to Constrained Optimization Problems;158
10.4.1;Sequential Unconstrained Minimization Techniques;158
10.5;Design Optimization Problems;162
10.5.1;Sample and Hold Circuit;163
10.5.2;Folded Cascode Amplifier;164
10.6;Discussion;164
10.7;Conclusion and Future Work;167
10.8;References;168
11;Multi-objective Optimization Using Surrogates;170
11.1;Introduction;170
11.2;Surrogate Models for Optimization;172
11.3;Multi-objective Optimization Using Surrogates;173
11.4;Pareto Fronts - Challenges;174
11.5;Response Surface Methods, Optimization Procedure and Test Functions;176
11.6;Update Strategies and Related Parameters;178
11.7;Test Functions;179
11.8;Pareto Front Metrics;180
11.8.1;Generational Distance ([3], pp.326);180
11.8.2;Spacing;180
11.8.3;Spread;180
11.8.4;Maximum Spread;181
11.9;Results;181
11.9.1;Understanding the Results;181
11.9.2;Preliminary Calculations;182
11.9.3;The Effect of the Update Strategy Selection;182
11.9.4;The Effect of the Initial Design of Experiments;186
11.10;Summary;189
11.11;References;189
12;A Review of Agent-Based Co-Evolutionary Algorithms for Multi-Objective Optimization;191
12.1;Introduction;191
12.2;Model of Co-Evolutionary Multi-Agent System;193
12.2.1;Co-Evolutionary Multi-Agent System;194
12.2.2;Environment;194
12.2.3;Species;195
12.2.4;Sex;196
12.2.5;Agent;197
12.3;Co-Evolutionary Multi-Agent Systems for Multi-Objective Optimization;201
12.3.1;Co-Evolutionary Multi-Agent System with Co-Operation Mechanism (CCoEMAS);201
12.3.2;Co-Evolutionary Multi-Agent System with Predator-Prey Interactions (PPCoEMAS);204
12.4;Experimental Results;210
12.4.1;Test Suite, Performance Metric and State-of-the-Art Algorithms;210
12.4.2;A Glance at Assessing Co-operation Based Approach (CCoEMAS);211
12.4.3;A Glance at Assessing Predator-Prey Based Approach (PPCoEMAS);214
12.5;Summary and Conclusions;221
12.6;References;221
13;A Game Theory-Based Multi-Agent System for Expensive Optimisation Problems;224
13.1;Introduction;224
13.2;Background;226
13.2.1;Optimisation;226
13.2.2;Game Theory: The Iterated Priosoners’ Dilemma;226
13.2.3;Multi-Agent Systems;227
13.3;Constructing GTMAS;228
13.3.1;GTMAS at Work: Illustration;229
13.4;The GTMAS Algorithm;231
13.4.1;Solver-Agents Decision Making Procedure;232
13.5;Application of GTMAS to TSP;234
13.6;Tests and Results;241
13.7;Conclusion and Further Work;242
13.8;References;243
14;Optimization with Clifford Support Vector Machines and Applications;246
14.1;Introduction;246
14.2;Geometric Algebra;247
14.2.1;The Geometric Algebra of n-D Space;248
14.2.2;The Geometric Algebra of 3-D Space;250
14.3;Linear Clifford Support Vector Machines for Classification;250
14.4;Non Linear Clifford Support Vector Machines for Classification;255
14.5;Clifford SVM for Regression;256
14.6;Recurrent Clifford SVM;258
14.7;Applications;260
14.7.1;3D Spiral: Nonlinear Classification Problem;260
14.7.2;Object Recognition;263
14.7.3;Multi-case Interpolation;269
14.7.4;Experiments Using Recurrent CSVM;270
14.8;Conclusions;273
14.9;References;273
15;A Classification Method Based on Principal Component Analysis and Differential Evolution Algorithm Applied for Prediction Diagnosis from Clinical EMR Heart Data Sets;276
15.1;Introduction;277
15.2;Heart Data Sets;280
15.3;Classification Method;281
15.3.1;Dimension Reduction Using Principal Component Analysis;281
15.3.2;Classification Based on Differential Evolution;282
15.3.3;Differential Evolution;284
15.4;Classification Results;285
15.5;Discussion and Conclusions;293
15.6;References;294
16;An Integrated Approach to Speed Up GA-SVM Feature Selection Model;297
16.1;Introduction;297
16.2;Methodology;300
16.2.1;Parallel/Distributed GA;300
16.2.2;Parallel SVM;302
16.2.3;Neighbor Search;303
16.2.4;Evaluation Caching;304
16.3;Experiments and Results;304
16.4;Conclusion;309
16.5;References;310
17;Computation in Complex Environments; Optimizing Railway Timetable Problems with Symbiotic Networks;311
17.1;Introduction;311
17.1.1;Convergence Inducing Process;312
17.1.2;A Classification of Problem Domains;313
17.2;Railway Timetable Problems;314
17.3;Symbiotic Networks;316
17.3.1;A Theory of Symbiosis;318
17.3.2;Premature Convergence;323
17.4;Symbiotic Networks as Optimizers;325
17.5;Trains as Symbiots;326
17.5.1;Trains in Symbiosis;327
17.5.2;The Environment;328
17.5.3;The Trains;328
17.5.4;The Optimizing Layer;330
17.5.5;Computational Complexity;331
17.5.6;Results;331
17.5.7;A Symbiotic Network as a CCGA;333
17.5.8;Discussion;334
17.6;References;334
18;Project Scheduling: Time-Cost Tradeoff Problems;337
18.1;Introduction;337
18.1.1;A Mathematical Description of TCT Problems;340
18.2;Resource-Constrained Nonlinear TCT;341
18.2.1;Artificial Neural Networks;342
18.2.2;Working of ANN and Heuristic Embedded Genetic Algorithm;343
18.2.3;ANNHEGA for a Case Study;346
18.3;Sensitivity Analysis of TCT Profiles;348
18.3.1;Working of IFAG;351
18.3.2;IFAG for a Case Study;351
18.4;Hybrid Meta Heuristic;355
18.4.1;Working of Hybrid Meta Heuristic;357
18.4.2;HMH Approach for Case Studies;360
18.4.3;Standard Test Problems;364
18.5;Conclusions;366
18.6;References;367
19;Systolic VLSI and FPGA Realization of Artificial Neural Networks;370
19.1;Introduction;371
19.2;Direct-Design of VLSI for Artificial Neural Network;373
19.3;Design Considerations and Systolic Building Blocks for ANN;375
19.4;Systolic Architectures for ANN;382
19.4.1;Systolic Architecture for Hopfield Net;382
19.4.2;Systolic Architecture for Multilayer Neural Network;384
19.4.3;Systolic Implementation of Back-Propagation Algorithm;384
19.4.4;Implementation of Advance Algorithms and Applications;387
19.5;Conclusion;387
19.6;References;388
20;Application of Coarse-Coding Techniques for Evolvable Multirobot Controllers;392
20.1;Introduction;392
20.2;Background;395
20.2.1;The Body and the Brain;396
20.2.2;Task Decomposition;396
20.2.3;Machine-Learning Techniques and Modularization;397
20.2.4;Fixed versus Variable Topologies;398
20.2.5;Regularity in the Environment;399
20.3;Artificial Neural Tissue Model;400
20.3.1;Computation;400
20.3.2;The Decision Neuron;401
20.3.3;Evolution and Development;402
20.3.4;Sensory Coarse Coding Model;404
20.4;An Example Task: Resource Gathering;406
20.4.1;Coupled Motor Primitives;408
20.4.2;Evolutionary Parameters;410
20.5;Results;410
20.5.1;Evolution and Robot Density;414
20.5.2;Behavioral Adaptations;414
20.5.3;Evolved Controller Scalability;417
20.6;Discussion;418
20.7;Conclusion;420
20.8;References;421




