E-Book, Englisch, 215 Seiten
Thangadurai / Manjubaashini / Thomas Nanostructured Materials
1. Auflage 2020
ISBN: 978-3-030-26145-0
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 215 Seiten
Reihe: Chemistry and Materials Science
ISBN: 978-3-030-26145-0
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book discusses the early stages of the development of nanostructures, including synthesis techniques, growth mechanisms, the physics and chemistry of nanostructured materials, various innovative characterization techniques, the need for functionalization and different functionalization methods as well as the various properties of nanostructured materials. It focuses on the applications of nanostructured materials, such as mechanical applications, nanoelectronics and microelectronic devices, nano-optics, nanophotonics and nano-optoelectronics, as well as piezoelectric, agriculture, biomedical and, environmental remediation applications, and anti-microbial and antibacterial properties. Further, it includes a chapter on nanomaterial research developments, highlighting work on the life-cycle analysis of nanostructured materials and toxicity aspects.
Autoren/Hrsg.
Weitere Infos & Material
1;Contents;6
2;1 Nanotechnology and Dimensions;13
2.1;1.1 Fundamentals of Nanomaterials;13
2.2;1.2 Dimensions of Nanomaterials;14
2.2.1;1.2.1 2D Confinement;14
2.2.2;1.2.2 1D Confinement;14
2.2.3;1.2.3 Zero Dimensional Confinement;15
2.3;1.3 Features of Nanoparticles;16
2.3.1;1.3.1 Activation of Particle Surface;16
2.3.2;1.3.2 Particle Size;16
2.3.3;1.3.3 Particle Shape;17
2.3.4;1.3.4 Two-Dimensional Particle Projection Image;17
2.3.5;1.3.5 Three-Dimensional Particle Image;17
2.4;1.4 Significances of Nanotechnology;19
2.5;1.5 Basic Concept of Nanotechnology;20
2.6;References;21
3;2 Nanomaterials, Properties and Applications;22
3.1;2.1 Brief Notes on Nanomaterials;22
3.2;2.2 Nanomaterial Properties;24
3.2.1;2.2.1 Structural Properties;24
3.2.2;2.2.2 Thermal Properties;25
3.2.3;2.2.3 Chemical Properties;26
3.2.4;2.2.4 Mechanical Properties;27
3.2.5;2.2.5 Magnetic Properties;27
3.2.6;2.2.6 Optical Properties;28
3.2.7;2.2.7 Electronic Properties;29
3.2.8;2.2.8 Physiochemical Properties of Nanomaterials;29
3.2.9;2.2.9 Specific Surface Area and Pore;34
3.3;2.3 Nanomaterial Synthesis Process;34
3.3.1;2.3.1 Top-Down Approach;34
3.3.2;2.3.2 Bottom-Up Approach;35
3.4;2.4 Applications of Nanomaterials;36
3.4.1;2.4.1 Environmental Sector;36
3.4.2;2.4.2 Health Sector;36
3.4.3;2.4.3 Energy Sector;37
3.5;References;38
4;3 Fundamentals of Nanostructures;40
4.1;3.1 Nanostructures Definition;40
4.2;3.2 Nanostructured Materials;41
4.2.1;3.2.1 1D Nanostructures;43
4.2.2;3.2.2 2D Nanostructures;43
4.2.3;3.2.3 3D Nanostructures;44
4.3;3.3 Features of Nanostructures;44
4.4;3.4 Theoretical Substantiation of the Approaches Proposed;45
4.5;3.5 Types of Nanostructured Material;47
4.5.1;3.5.1 Nanostructures in Plants;48
4.5.2;3.5.2 Nanostructures in Insects;50
4.5.3;3.5.3 Nanostructures in the Human Body;51
4.5.4;3.5.4 Ceramic Nanostructures;53
4.5.5;3.5.5 Polymer Nanostructures;53
4.5.6;3.5.6 Nanocomposites;53
4.5.7;3.5.7 Thin Films;54
4.5.8;3.5.8 Nanostructure Computation;54
4.6;References;55
5;4 Physics and Chemistry of Nanostructures;57
5.1;4.1 Nanostructured Materials;57
5.2;References;63
6;5 Quantum Effects, CNTs, Fullerenes and Dendritic Structures;64
6.1;5.1 Fullerenes Structures;64
6.2;5.2 Nanostructures;67
6.3;5.3 Laser-Assisted Metal-Catalyzed Nanowire Growth;68
6.4;5.4 Hierarchal Complexity in 1-D Nanostructures;69
6.5;5.5 Mechanical and Thermal Properties;72
6.6;5.6 Electronic Properties of Nanowires;73
6.7;5.7 Optical Properties of Nanowires;75
6.8;References;76
7;6 Semiconductors, Organic and Hybrid Nanostructures;78
7.1;6.1 Semiconductor Nanostructures;78
7.1.1;6.1.1 Quasi-One-Dimensional Systems;78
7.1.2;6.1.2 Double Quantum Well;79
7.1.3;6.1.3 The Size of Semiconductor Nanostructures;79
7.1.4;6.1.4 Electrostatics of a GaAs/AlGaAs Heterostructure;80
7.1.5;6.1.5 Applications of Semiconductor Nanostructures;80
7.2;6.2 Organic Nanostructures;81
7.2.1;6.2.1 Structures and Applications of Organic Nanostructures;82
7.2.2;6.2.2 Miscellaneous Application of Organic Nanostructures;82
7.3;6.3 Hybrid Nanostructures;83
7.3.1;6.3.1 Physical Deposition to Synthesize the Hybrid Nanostructures of Metal NPs/2D Materials;83
7.3.2;6.3.2 Chemical Reduction to Synthesize the Hybrid Nanostructures of Metal NPs/2D Materials;84
7.3.3;6.3.3 Applications of Hybrid Nanostructures;84
7.4;References;85
8;7 Properties of Nanostructured Materials;86
8.1;7.1 Unique Properties of Nanostructures;86
8.2;7.2 Physical Properties of Nanowires;87
8.2.1;7.2.1 Thermal Stability;87
8.2.2;7.2.2 Optical Properties;87
8.2.3;7.2.3 Electronic Properties;88
8.2.4;7.2.4 Mechanical Properties;88
8.2.5;7.2.5 Field Emission Properties;89
8.3;7.3 Grain Boundaries in Nanostructured Materials;89
8.4;7.4 Multifunctional Properties of Nanostructured Metallic Materials;90
8.4.1;7.4.1 Mechanical Properties;90
8.4.2;7.4.2 Strength Measurement;92
8.4.3;7.4.3 Superstrength and Ductility;96
8.4.4;7.4.4 Electrical Conductivity;97
8.4.5;7.4.5 Magnetic Properties;98
8.4.6;7.4.6 Corrosion Resistance;99
8.4.7;7.4.7 Reliability of Nanostructured Materials;100
8.4.8;7.4.8 Thermal Properties of Nanostructures;101
8.4.9;7.4.9 Thermal Conductance;102
8.5;References;103
9;8 Nanostructured Materials—Design and Approach;105
9.1;8.1 Synthesis of Nanostructured Materials;105
9.2;8.2 Nanostructure Synthesis and Fabrication Methods;106
9.2.1;8.2.1 Physical Vapor Deposition;107
9.3;8.3 Chemical Vapor Deposition;110
9.3.1;8.3.1 Thermal Chemical Vapor Deposition;111
9.3.2;8.3.2 Metal–Organic Chemical Vapor Deposition (MOCVD);113
9.4;8.4 Solution-Based Chemistry;114
9.4.1;8.4.1 Hydrothermal Synthesis;114
9.4.2;8.4.2 Hydrolysis;115
9.4.3;8.4.3 Aqueous Chemical Growth;115
9.5;References;115
10;9 Functionalization of Nanostructures;117
10.1;9.1 Aspects of Nanostructure System;117
10.2;9.2 Chemistry of Nanostructure Functionalization;118
10.3;9.3 Need for Functionalization;118
10.4;9.4 Methods of Functionalization;119
10.5;9.5 Class of Functionalization;120
10.5.1;9.5.1 Thiol/Aminothiol;120
10.5.2;9.5.2 Bio-functionalization;120
10.5.3;9.5.3 Asymmetric Group;121
10.5.4;9.5.4 Polymers in Functionalization;122
10.5.5;9.5.5 Functionalization of Metals;122
10.5.6;9.5.6 Rare-Earth in Functionalization;122
10.6;9.6 Miscellaneous Functionalized Nanostructures;125
10.7;References;126
11;10 Characterization and Technical Analysis of Nanostructured Materials;127
11.1;10.1 Atomic Force Microscopy (AFM);128
11.2;10.2 X-Ray Diffraction (XRD);128
11.3;10.3 Scanning Probe Microscopies (SPM);129
11.4;10.4 Field Ion Microscopy (FIM);129
11.5;10.5 Raman Spectroscopy;130
11.6;10.6 Absorption Spectroscopy (UV-Vis);131
11.7;10.7 Photoluminescence Spectroscopy (PL);131
11.8;10.8 Field Emission Scanning Electron Microscopy (FESEM);132
11.9;10.9 Confocal Microscopy;132
11.10;10.10 Transmission Electron Microscope (TEM);133
11.11;10.11 X-Ray Photoelectron Spectroscopy (XPS);134
11.12;10.12 Auger Electron Spectroscopy (AES);135
11.13;References;135
12;11 Fabrication of Nanostructures;137
12.1;11.1 Lithography;137
12.1.1;11.1.1 Photolithography;137
12.1.2;11.1.2 Contact-Mode Photolithography (CMP);139
12.1.3;11.1.3 Deep Ultra-Violet Lithography (DUV);140
12.1.4;11.1.4 Phase-Shifting Photolithography;140
12.1.5;11.1.5 Electron Beam Lithography;141
12.1.6;11.1.6 X-Ray Lithography;143
12.1.7;11.1.7 Focused Ion Beam (FIB) Lithography;144
12.1.8;11.1.8 Neutral Atomic Beam Lithography;144
12.2;11.2 Nanolithography;146
12.2.1;11.2.1 AFM Based Nanolithography;147
12.2.2;11.2.2 Soft Lithography;147
12.2.3;11.2.3 Microcontact Printing;147
12.2.4;11.2.4 Molding;149
12.2.5;11.2.5 Nanoimprint;151
12.2.6;11.2.6 Dip-Pen Nanolithography;152
12.3;11.3 Etching;153
12.4;References;154
13;12 Nanostructured Materials for Optical and Electronic Applications;156
13.1;12.1 Applications of Nanostructured Materials in Solar Cells;156
13.1.1;12.1.1 Dye-Sensitized Nanostructured ZnO Electrodes for Solar Cell Applications;157
13.2;12.2 Photoconductive Oxide Nanowires as Nanoscale Optoelectronic Switches;157
13.3;12.3 Energy Storage, Batteries, Fuel Cells;159
13.4;12.4 Nanostructured Semiconductor Materials for Optoelectronic Applications;160
13.5;12.5 Carbon-Based Sensors and Electronics;162
13.6;References;166
14;13 Nanostructured Materials for Bioapplications;167
14.1;13.1 Nanostructured Ti and Ti Alloys for Biomedical Engineering;168
14.2;13.2 Nanostructured Materials for Biosensors;168
14.3;13.3 Nanobiotechnology;169
14.4;13.4 Gene Therapy;171
14.5;13.5 Bioimaging;171
14.6;13.6 Tissue Engineering and Regenerative Medicine;171
14.7;13.7 Bone Implant;172
14.8;13.8 Modulated Drug Delivery System;172
14.9;13.9 DNA Biosensor;173
14.10;13.10 Glucose Biosensor;173
14.11;13.11 Therapies;174
14.11.1;13.11.1 Photodynamic Therapy;174
14.11.2;13.11.2 Chemotherapy;175
14.11.3;13.11.3 Photothermal Therapy;175
14.12;References;176
15;14 Nanostructured Materials for Photonic Applications;177
15.1;14.1 Optical Waveguides Based on Small Organic Molecules;178
15.2;14.2 Optically Pumped Organic Lasers;179
15.3;14.3 3D Photonic Crystals;179
15.4;14.4 Photonic LEDs;180
15.5;14.5 Photonic Crystal Filters;180
15.6;14.6 Photonic Crystals: Bright Structural Colour from Functional Morphology;182
15.7;References;184
16;15 Nanostructured Materials for Environmental Remediation;185
16.1;15.1 Gas Treatment: Nano-Array Based Catalytic Converters;186
16.2;15.2 Remediation of Organohalides by Dye Sensitized TiO2;186
16.3;15.3 Water Split Application of the Nanostructure Photocatalyst;187
16.4;15.4 Nanostructure Photocatalyst for Water and Wastewater Treatment;187
16.5;15.5 Sensing the Chemical Environment with Semiconductor Nanostructures;189
16.6;15.6 Pollution Control Using Nanostructures;189
16.6.1;15.6.1 Air Pollution;189
16.6.2;15.6.2 Water Pollution;189
16.7;15.7 Field-Effect Transistor (FET) Sensors;190
16.8;References;191
17;16 Miscellaneous Applications of Nanostructures;193
17.1;16.1 Nanostructures in Aerospace Application;193
17.2;16.2 Nanostructures in RADAR Application;194
17.3;16.3 Nanostructures in Stealth Application;194
17.4;16.4 Nanostructured Electrode;195
17.5;16.5 Nanostructures in Antimicrobial Application;197
17.6;16.6 Nanostructures in Cosmetic Application;198
17.6.1;16.6.1 Chitin Nanofibril;198
17.6.2;16.6.2 Nanoparticles as UV Protective Filters in Sun Screens;198
17.7;References;199
18;17 Nanostructured Materials Life Time and Toxicity Analysis;200
18.1;17.1 Impact of Nanomaterials to Human Health and Ecosystems;201
18.2;17.2 Nanomaterial Toxicity;202
18.3;17.3 A Consideration of All Pertinent Sources of Nanomaterials;203
18.4;17.4 Nanoparticle Toxicity;204
18.4.1;17.4.1 Mechanisms of Toxicity;205
18.5;17.5 Interference of Nanoparticles with in Vitro Toxicity Assays;205
18.6;17.6 Nanotoxicology;205
18.7;References;206
19;18 Nanomaterials Research and Development;208
19.1;18.1 LCA—Life Cycle Assessment of Nanomaterials;208
19.2;18.2 The Role of Life Cycle Assessment in the Field of Nanotechnology;208
19.3;18.3 LCA Procedure;210
19.4;18.4 Life-Cycle Assessment of Engineered Nanomaterials;210
19.5;18.5 LCA of an Emerging Technology;211
19.6;18.6 Life Cycle Inventory (LCI);212
19.7;18.7 Life Cycle Impact Assessment (LCIA);213
19.8;18.8 LCA of Nanomaterials;214
19.9;References;214




