Timmerhaus / Reed | Cryogenic Engineering | E-Book | www.sack.de
E-Book

E-Book, Englisch, 374 Seiten

Reihe: International Cryogenics Monograph Series

Timmerhaus / Reed Cryogenic Engineering

Fifty Years of Progress
2007
ISBN: 978-0-387-46896-9
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark

Fifty Years of Progress

E-Book, Englisch, 374 Seiten

Reihe: International Cryogenics Monograph Series

ISBN: 978-0-387-46896-9
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



This is a benchmark reference work on Cryogenic Engineering which chronicles the major developments in the field. Starting with an historical background, this book reviews the development of data resources now available for cryogenic fields and properties of materials. It presents the latest changes in cryopreservation and the advances over the past 50 years. The book also highlights an exceptional reference listing to provide referral to more details.

Timmerhaus / Reed Cryogenic Engineering jetzt bestellen!

Weitere Infos & Material


1;Preface;6
2;Contents;8
3;About the Authors;10
4;Background Information;13
5;Historical Summary of Cryogenic Activity Prior to 19501;14
5.1;Abstract;14
5.2;1.1 Introduction;14
5.3;1.2 The Beginning of Cryogenics;17
5.4;1.3 Cryogenic Applications Around 1950;29
5.5;1.4 Summary;36
5.6;References;36
6;Advances in Cryogenic Data Development over the Past 50 Years;39
7;Sources of Cryogenic Data and Information;40
7.1;Abstract;40
7.2;2.1 Introduction;40
7.3;2.2 Early Sources of Data;41
7.4;2.3 National Bureau of Standards Cryogenic Data Center;42
7.4.1;2.3.1 Data Compilation;43
7.4.2;2.3.2 Documentation;43
7.4.3;2.3.3 Technical Services;43
7.5;2.4 Period after National Bureau of Standards Data Center;45
7.5.1;2.4.1 Commercial Electronic Databases;45
7.5.2;2.4.2 Book on Cryogenic Materials;45
7.5.3;2.4.3 Cryogenic Information Center;45
7.5.4;2.4.4 Information Resources: Defense Technical Information Center and the Information Analysis Centers;51
7.5.5;2.4.5 National Institute of Standards and Technology;54
7.5.6;2.4.6 Vendor Data Packages;55
7.5.7;2.4.7 NASA Centers;55
7.5.8;2.4.8 Universities;55
7.5.9;2.4.9 New Book Releases;55
7.5.10;2.4.10 Monographs;56
7.6;2.5 Plans for Data Retrieval and Material Properties;58
7.7;2.6 Conclusions;58
7.8;References;59
8;Trends and Advances in Cryogenic Materials;61
8.1;Abstract;61
8.2;3.1 Introduction;61
8.3;3.2 Trends in Cryogenic Materials Research;62
8.4;3.3 Advances in Cryogenic Materials R&D;68
8.5;3.3.1 Fracture Mechanics;69
8.6;3.3.2 Austenitic Steel Advancements;74
8.7;3.3.3 Nonmetallic Composite Electrical Insulation;81
8.8;3.3.4 Superconductors;88
8.9;3.3.5 Other Advances;88
8.10;3.4 General Discussion;89
8.11;References;89
9;History and Applications of Nonmetallic Materials;93
9.1;Abstract;93
9.2;4.1 Introduction;93
9.3;4.2 History and Materials Development;94
9.4;4.3 Applications and Properties 4.3.1 Ceramics;95
9.5;4.3.2 Polymers;98
9.6;4.3.3 Fiber Composites;104
9.7;4.3.4 Functional Nonmetallics;108
9.8;4.3.5 Polarization Properties;109
9.9;References;110
9.10;General Reading;110
10;Improvement in Cryogenic Fundamentals over the Past 50 Years;111
11;Advances in Cryogenic Principles;112
11.1;Abstract;112
11.2;5.1 Introduction;112
11.3;5.2 Thermodynamics;113
11.4;5.3 Heat Transfer;114
11.5;5.4 Gas Separation Systems;118
11.6;5.5 Fluid Flow and Convective Heat Transfer;121
11.7;5.6 Technical Presentations;122
11.8;5.7 Conclusions;123
11.9;Nomenclature;123
11.10;Greek symbols;124
11.11;References;124
12;Insulation Progress since the Mid-1950s;127
12.1;Abstract;127
12.2;6.1 Introduction;127
12.3;6.2 Vacuum Insulation;128
12.4;6.3 Powder Insulation;129
12.5;6.3.1 Nonevacuated Powders;129
12.6;6.3.2 Evacuated Powders and Fibrous Insulations;130
12.7;6.3.3 Opacified-Powder Insulations;131
12.8;6.3.4 Microsphere Insulation;131
12.9;6.4 Foam and Fiber Insulations;132
12.10;6.5 Multilayer Insulation;133
12.11;6.6 Summary;136
12.12;References;138
13;Development of Low-Loss Storage of Cryogenic Liquids over the Past 50 Years;141
13.1;Abstract;141
13.2;7.1 Introduction;141
13.3;7.2 Heat Flows into a Cryogenic System;143
13.4;7.3 Vapor Cooling to Reduce Heat In-Leaks;143
13.5;7.4 Vapor-Cooled Radiation Shields;144
13.6;7.5 Gas-Purged Insulations;144
13.7;7.6 Evacuated Powder Insulations;145
13.8;7.7 Evacuated Multilayer Insulations;145
13.9;7.8 Multi-Shielding;146
13.10;7.9 Materials of Construction;146
13.11;7.10 Evaporation Instabilities;146
13.12;7.11 Particular Storage and Containment Developments 7.11.1 Liquid Helium Usage and Nuclear Magnetic Resonance, Magnetic Resonance Imaging and Magneto- Encephalograph Systems;147
13.13;7.11.2 Superfluid Helium Usage in the Large Hadron Collider, CERN;148
13.14;7.11.3 Liquid Hydrogen for Fuel Cells;148
13.15;7.11.4 Liquid Neon and Liquid Air Coolants for Ceramic Superconductors at High Field;149
13.16;7.11.5 Liquid Nitrogen as Standard Refrigerant for Food Freezing, Cryopreservation, Cryosurgery, etc.;149
13.17;7.11.6 Liquid-Gas Cylinders;149
13.18;7.11.7 Liquefied Natural Gas and Liquefied Petroleum Gas in the Future;150
13.19;7.11.8 Cryogen-Free Operation;150
13.20;7.12 Conclusions;151
13.21;References;152
14;Fifty-YearsÌ Development of Cryogenic Liquefaction Processes;153
14.1;Abstract;153
14.2;8.1 Introduction;153
14.3;8.2 Cryogenic Air Separation: Oxygen and Nitrogen;154
14.4;8.2.1 Purification and Heat Exchanges;154
14.5;8.2.2 Distillation;155
14.6;8.2.3 Other Technical Developments;156
14.7;8.2.4 Liquid Pump Plants;158
14.8;8.2.5 Enhanced Oil Recovery;159
14.9;8.2.6 Summary: Air Separation;159
14.10;8.3 Hydrogen Liquefaction;159
14.11;8.3.1 Ortho- to Para-Hydrogen Conversion;159
14.12;8.3.2 Hydrogen Liquefier Cycles;161
14.13;8.3.3 Summary: Hydrogen Liquefiers;161
14.14;8.4 Liquefied Natural Gas;161
14.15;8.4.1 Feed Pre-Purification;162
14.16;8.4.2 Heat Exchangers;163
14.17;8.4.3 Compressors and Drivers, etc.;164
14.18;8.4.4 Expanders;164
14.19;8.4.5 Plant Efficiency and Specific Powers;164
14.20;8.4.6 Summary: Liquefied Natural Gas;164
14.21;8.5 Overall Review;165
14.22;References;165
15;Advances in Helium Cryogenics;168
15.1;Abstract;168
15.2;9.1 Introduction;168
15.3;9.2 Three Major Developments in Helium Cryogenics;170
15.4;9.2.1 Large Refrigerator/Liquefiers for Particle Accelerators;171
15.5;9.2.2 Space-Based He II Cryogenic Systems;174
15.6;9.2.3 4 K Regenerative Cryocoolers;177
15.7;9.3 Other Significant Developments in Helium Cryogenics;181
15.8;9.3.1 Small Cryocoolers for Intermediate Temperature Applications;181
15.9;9.3.2 Improvements in Rotating Machinery for Low- Temperature Helium Service;181
15.10;9.3.3 Production of Standardized Liquid Helium Cryostats;182
15.11;9.3.4;182
15.12;Dilution Refrigeration;182
15.13;9.3.5 Magnetic Refrigeration;183
15.14;References;183
16;Lessons Learned in 50 Years of Cryogenic Thermometry;186
16.1;Abstract;186
16.2;10.1 Introduction;186
16.3;10.2 Temperature Scales 10.2.1 Thermodynamic Temperature;188
16.4;10.2.2 Empirical Temperature;188
16.5;10.2.3 International Temperature Scales;190
16.6;10.2.4 The 2005 Redefinition of the International Scale;191
16.7;10.2.5 Reference Points for Thermometry;193
16.8;10.2.6 Ideal Substances versus Standard Reference Materials;194
16.9;10.2.7 Types of Cryogenic Reference Points;195
16.10;10.3 Thermometry 10.3.1 Gas Thermometry Below 273.16 K;203
16.11;10.3.2 Vapor-Pressure Thermometry;208
16.12;10.3.3;215
16.13;Melting Curve Thermometry;215
16.14;10.4 Electric Thermometers for Cryogenics;216
16.15;10.4.1 The Choice of Cryogenic Thermometers;216
16.16;References;226
17;Cryogenic Applications Development Over the Past 50 Years;229
18;Aerospace Coolers: A 50-Year Quest for Long- Life Cryogenic Cooling in Space;230
18.1;Abstract;230
18.2;11.1 Introduction;230
18.3;11.1.1 Cryogenic Applications in Space;231
18.4;11.1.2 Chapter Organization;233
18.5;11.2 1955 to 1965: The Birth of the Space Program;233
18.6;11.3 1965 to 1975: Race to the Moon, First Cryogenics in Space;234
18.7;11.3.1 1965Ò1975 Cryogenic Missions;235
18.8;11.3.2 1965Ò1975 R&D Emphasis;239
18.9;11.4 1975 to 1985: The Struggle for Long-Life Coolers;241
18.10;11.4.1 1975Ò1985 Flight Applications;242
18.11;11.4.2 1975Ò1985 R&D Emphasis;247
18.12;11.5 1985Ò1995: Long-Life Cryocoolers Become a Reality;254
18.13;11.5.1 1985Ò1995: Cryogenic Missions;254
18.14;11.5.2 1985Ò1995 R&D Emphasis;259
18.15;11.6 1995Ò2005: Long-Life Cryocoolers and Large Cryostats Become Mature Space Technologies;264
18.16;11.6.1 1995Ò2005 Flight Applications;265
18.17;11.6.2 1995Ò2005 R&D Emphasis;278
18.18;11.7 Summary;281
18.19;References;282
19;Understanding Properties and Fabrication Processes of Superconducting Nb3Sn Wires;290
19.1;Abstract;290
19.2;12.1 Introduction;290
19.3;12.2 Superconducting Properties of Alloyed Nb3Sn 12.2.1 Critical- Current Densities;292
19.4;12.2.2 Intrinsic Superconducting Properties;293
19.5;12.3 Chemical Compositions of Alloyed Nb3Sn 12.3.1 Bulk Compositions;295
19.6;12.3.2 Grain-Boundary Compositions;297
19.7;12.4 Effects of Alloying on Layer and Grain Growth;300
19.8;12.5 Flux-Line Pinning and Field Dependence of Critical Currents 12.5.1 Flux Pinning by Grain Boundaries;302
19.9;12.5.2 Scaling Law for Jc(µ0H);304
19.10;12.6 The State-of-the-Art Multifilamentary Nb3Sn Wires;306
19.11;12.6.1 The Bronze Process;306
19.12;12.6.2 The Internal-Sn Process;307
19.13;References;311
20;High-Temperature Superconductors:;314
20.1;Abstract;314
20.2;13.1 Introduction;314
20.3;13.2 YBCO, the Workhorse;318
20.4;13.3 Melt-Processed YBCO;319
20.5;13.4 YBCO-Coated Conductors: Second-Generation High- Temperature Superconductors;320
20.5.1;13.4.1 Substrates;321
20.5.2;13.4.2 Buffer-Layer Architectures;323
20.5.3;13.4.3 YBCO Deposition;323
20.5.4;13.4.4 Conclusions and Prospects for Coated Conductors;326
20.6;13.5 Applications of (Bi,Pb);326
20.7;13.6 The First High-Temperature Superconductivity Wires;327
20.8;13.7 The Oxide-Powder-in-Tube Process;328
20.8.1;13.7.1 Powder;329
20.8.2;13.7.2 Ag Sheath;329
20.8.3;13.7.3 Mechanical Deformation to Form the Green Wire;330
20.8.4;13.7.4 Heat Treatment 1 (HT1);331
20.8.5;13.7.5 Rolling;333
20.8.6;13.7.6 Heat Treatment 2 (HT2);334
20.9;13.8 Future Work;337
20.10;13.9 Summary;339
20.11;References;339
21;A Paradigm Shift in Cryopreservation: Molecular- Based Advances to Improve Outcome;345
21.1;Abstract;345
21.2;14.1 Introduction;345
21.3;14.1.1 Biopreservation;346
21.4;14.1.2 The Hypothermic Continuum;347
21.5;14.2 Cryopreservation;348
21.6;14.2.1 Current Status: Traditional Approaches to Cryopreservation;349
21.7;14.3 Understanding Cell Death 14.3.1 Molecular- Based Cellular Response to Preservation;349
21.8;14.3.2 Modes of Cell Death;350
21.9;14.3.3 Physical Events Leading to Cell Death;350
21.10;14.3.4 Necrosis: Pathological Cell Death;350
21.11;14.3.5 Apoptosis: Gene-Regulated Cell Death;351
21.12;14.3.6 Induction of Apoptosis;351
21.13;14.3.7 Transitional Cell Death;352
21.14;14.4 Molecular-Based Cryopreservation-Induced Cell Death;353
21.15;14.4.1 Apoptosis in Cryopreservation;353
21.16;14.4.2 Cryopreservation-Induced Delayed-Onset Cell Death;354
21.17;14.4.3 Initiation of Cryopreservation-Induced Molecular Death;355
21.18;14.4.4 Effects of Cryopreservation on Cell Function;355
21.19;14.4.5 Control of Cryopreservation-Induced Molecular Response;356
21.20;14.4.6 Preservation Solution Design;356
21.21;14.4.7 Extracellular Preservation Media;357
21.22;14.4.8 Intracellular Preservation Media;357
21.23;14.4.9 Ionic Composition;358
21.24;14.4.10 pH Buffering;359
21.25;14.4.11 Osmotic Control;359
21.26;14.4.12 Energy Substrates;359
21.27;14.4.13 Free-Radical Scavengers;359
21.28;14.5 Effects of New Solution Design on Cryopreservation Outcome;360
21.29;14.5.1 Application of Targeted Apoptotic Control;361
21.30;14.6 Summary;362
21.31;References;362
22;Index;372



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.