Liebe Besucherinnen und Besucher,
heute ab 15 Uhr feiern wir unser Sommerfest und sind daher nicht erreichbar. Ab morgen sind wir wieder wie gewohnt für Sie da. Wir bitten um Ihr Verständnis – Ihr Team von Sack Fachmedien
E-Book, Englisch, Band 13890, 265 Seiten, eBook
Torra / Narukawa Modeling Decisions for Artificial Intelligence
1. Auflage 2023
ISBN: 978-3-031-33498-6
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
20th International Conference, MDAI 2023, Umeå, Sweden, June 19–22, 2023, Proceedings
E-Book, Englisch, Band 13890, 265 Seiten, eBook
Reihe: Lecture Notes in Computer Science
ISBN: 978-3-031-33498-6
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Logic Aggregators and Their Implementations.- Decision making and uncertainty .- Multi-Target Decision Making under Conditions of Severe Uncertainty.- Constructive set function and extraction of a k-dimensional element.- Coherent upper conditional previsions defined by fractal outer measures to represent the unconscious activity of human brain.- Discrete chain-based Choquet-like operators.- On a new generalization of decomposition integrals.- Bipolar OWA operators with continuous input function.- Machine Learning and data science .- Cost-constrained group feature selection using information theory.- Conformal Prediction for Accuracy Guarantees in Classification with Reject Option.- Adapting the Gini's index for solving Predictive Tasks.- Bayesian logistic model for positive and unlabeled data.- A goal-oriented specification language for reinforcement learning.- Improved Spectral Norm Regularization for NeuralNetworks.- Preprocessing Matters: Automated Pipeline Selection for Fair Classification.- Predicting Next Whereabouts using Deep Learning.- A Generalization of Fuzzy c-Means with Variables Controlling Cluster Size.- Data privacy .- Local Differential Privacy Protocol for Making Key{Value Data Robust against Poisoning Attacks.- Differential Privacy through Noise-Graph Addition.