Tschinkel / Zarhin | Algebra, Arithmetic, and Geometry | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band 270, 704 Seiten

Reihe: Progress in Mathematics

Tschinkel / Zarhin Algebra, Arithmetic, and Geometry

Volume II: In Honor of Yu. I. Manin
2009
ISBN: 978-0-8176-4747-6
Verlag: Birkhäuser Boston
Format: PDF
Kopierschutz: 1 - PDF Watermark

Volume II: In Honor of Yu. I. Manin

E-Book, Englisch, Band 270, 704 Seiten

Reihe: Progress in Mathematics

ISBN: 978-0-8176-4747-6
Verlag: Birkhäuser Boston
Format: PDF
Kopierschutz: 1 - PDF Watermark



Algebra, Arithmetic, and Geometry: In Honor of Yu. I. Manin consists of invited expository and research articles on new developments arising from Manin's outstanding contributions to mathematics.

Tschinkel / Zarhin Algebra, Arithmetic, and Geometry jetzt bestellen!

Weitere Infos & Material


1;Preface;8
2;Contents
;10
3;Contents of Volume I;12
4;Potential Automorphy of Odd-Dimensional Symmetric Powers of Elliptic Curves and Applications;14
4.1;1 Reciprocity for n-dimensional Galois representations;16
4.2;2 Potential modularity of a Galois representation;21
4.3;3. A lemma about certain residual representations;25
4.4;4. Removing t;27
4.5;5. Applications and generalizations;30
4.6;6. Concluding remarks;33
4.7;References;33
5;Cyclic Homology with Coefficients;35
5.1;1 Recollection on cyclic homology.;37
5.2;2 Cyclic bimodules.;40
5.3;3 Gauss–Manin connection.;45
5.4;4 Categorical Approach.;48
5.5;5 Discussion;56
5.6;References;58
6;Noncommutative Geometry and Path Integrals;60
6.1;1 Noncommutative Monomials and Lattice Paths;62
6.2;2 Noncommutative exponential functions.;65
6.3;3 Generalities on the Noncommutative Fourier Transform;75
6.4;4 Noncommutative Gaussian and the Wiener Measure;79
6.5;5 Futher Examples of NCFT;87
6.6;6 Fourier Transform of Noncommutative Measures;88
6.7;7 Toward the Inverse Noncommutative Fourier Transform;93
7;Another Look at the Dwork Family;99
7.1;1 Introduction and a bit of history;99
7.2;2 The situation to be studied: generalities;101
7.3;3 The particular situation to be Studied: details;103
7.4;4 Interlude: Hypergeometric sheaves;107
7.5;5 Statement of the main theorem;110
7.6;6 Proof of the main theorem: the strategy;111
7.7;7 Proof of Theorem 6.1;114
7.8;8 Appendix I: The transcendental approach;121
7.9;9 Appendix II: The situation in characteristic p, when p divides some wi;129
7.10;10 Appendix III: Interesting pieces in the original Dwork family;132
7.11;References;134
8;Graphs, Strings, and Actions;137
8.1;1 Graphs, Spaces of Graphs, and Cell Models;140
8.1.1;1.1 Classes of Graphs;140
8.1.1.1;Graphs;140
8.1.1.2;Ribbon Graphs;140
8.1.1.3;The genus of a ribbon graph and its surface;141
8.1.1.4;Treelike, normalized Marked ribbon graphs;141
8.1.1.5;The intersection tree of an almost treelike ribbon graph;142
8.1.1.6;Dual b/w tree of a Marked ribbon graph;142
8.1.1.7;Spineless marked ribbon graphs;142
8.1.2;1.2 Operations on graphs;143
8.1.2.1;Contracting Edges;143
8.1.3;1.3 Spaces of Graphs with Metrics;144
8.1.3.1;Graphs with a Metric;144
8.1.3.2;Projective Metrics;144
8.1.3.3;The Space of Metric Ribbon Graphs;145
8.1.3.4;Cacti and Spineless Cacti and Thickened Cacti;145
8.1.3.5;Marked Ribbon Graphs with Metric and Maps of Circles;145
8.1.3.6;Cactus Terminology;146
8.1.3.7;Normalized Treelike and Almost Treelike Ribbon Graphs and Their Cell Complexes;146
8.1.3.8;Details of the Bicrossed Product Structure for Cacti;148
8.2;2 The Tree Level: Cell Models for (Framed) Little Discs and Their Operations;149
8.2.1;2.1 A First Cell Model for the Little Discs: Cact1;149
8.2.2;2.2 A CW Decomposition for Cacti1 and a Cellular Chain Model for the Framed Little Discs;150
8.2.3;2.3 The GBV Structure;153
8.2.4;2.4 Cells for the Araki–Kudo–Cohen, Dyer–Lashof Operations;155
8.2.5;2.5 A Smooth Cellular Model for the Framed Little Discs: Cacti;156
8.2.5.1;The Relevant Trees;156
8.2.6;2.6 The KW Cell Model for the Little Discs;159
8.2.6.1;Trees;159
8.2.6.2;The Minimal A Complex;160
8.2.7;2.7 A Finer Cell Model, the Generalized Boardman–Vogt Decomposition;160
8.2.7.1;Decomposing the Stasheff Polytope;160
8.2.7.2;Decomposing the Cyclohedra;161
8.2.7.3;Trees and Their Cell Complex;161
8.2.7.4;The Homotopy from KS to Cact1;162
8.2.7.5;The Cell Level: Maps and i;162
8.2.7.6;The Versions for the Framed Little Discs;163
8.3;3 Operations of the Cell Models on Hochschild Complexes;164
8.3.1;3.1 The Cyclic Deligne Conjecture;164
8.3.1.1;Assumption;164
8.3.1.2;Notation;164
8.3.1.3;Assumption;165
8.3.1.4;Correlators from Decorated Trees;165
8.3.1.5;The Foliage Operator;166
8.3.1.6;Signs;166
8.3.1.7;Examples;167
8.3.2;3.2 The Araki–Kudo–Cohen, Dyer–Lashof Operations on the Hochschild Complex;169
8.3.3;3.3 The A-Deligne Conjecture;169
8.3.4;3.4 The Cyclic A Case;170
8.4;4 The Moduli Space vs. the Sullivan PROP;170
8.4.1;4.1 Ribbon Graphs and Arc Graphs;170
8.4.1.1;A Short Introduction to the Arc Operad;170
8.4.2;4.2 Spaces of Graphs on Surfaces;170
8.4.2.1;Embedded Graphs;171
8.4.2.2;A Linear Order on Arcs;171
8.4.2.3;The Poset Structure;172
8.4.2.4;CW Structure of Ag,rs;172
8.4.2.5;Open-Cell Cell Complex;173
8.4.2.6;Relative Cells;173
8.4.2.7;Elements of the Ag,rs as Projectively Weighted Graphs;173
8.4.3;4.3 Topological Operad Structure;175
8.4.3.1;The Spaces Arc(n);175
8.4.3.2;Topological Description of the Glueing ;175
8.4.3.3;The Dual Graph;176
8.4.4;4.4 DArc;176
8.4.4.1;The Relation to Moduli Space;176
8.4.5;4.5 Cells;176
8.4.6;4.6 Digraphs and Sullivan Chord Diagrams;177
8.4.6.1;Ribbon Digraphs;177
8.4.6.2;Sullivan Chord and Ribbon Diagrams;177
8.4.7;4.7 Graph Actions, Feynman Rules, and Correlation Functions;178
8.4.7.1;Operadic Correlation Functions;178
8.4.8;4.8 Operadic Correlation Functions with Values in a Twisted Hom Operad;179
8.4.8.1;Signs;179
8.4.9;4.9 Arc Correlation Functions;179
8.4.9.1;Correlation Functions on the Tensor Algebra of an Algebra;180
8.4.9.2;Correlators for the Hochschild Cochains of a Frobenius Algebra ;181
8.4.9.3;The Sullivan–Chord Diagram Case;183
8.4.10;4.10 Correlators for A;183
8.4.11;4.11 Application to String Topology;184
8.5;5 Stabilization and Outlook;184
8.6;References;185
9;Quotients of Calabi–Yau Varieties;189
9.1;1 Uniruled quotients;193
9.2;2 Maps of Calabi–Yau Varieties;196
9.3;3 Basic Non-Reid–Tai Pairs;204
9.4;4 Quotients of Abelian Varieties;210
9.5;5 Examples;217
9.6;References;219
10;Notes on Motives in Finite Characteristic;222
10.1;0.1 An explicit example;224
10.2;1 First proposal: algebraic dynamics;226
10.2.1;1.1 The case of GL(1);226
10.2.2;1.2 Moduli of local systems on surfaces;227
10.2.2.1;Example: SL(2)-local systems on the sphere with three punctures;228
10.2.3;1.3 Equivariant bundles and Ruelle-type zeta functions;229
10.2.3.1;Reminder: Trace formula and Ruelle-type zeta function;230
10.2.3.2;Rationality conjecture for motivic local systems;231
10.3;2 Second proposal: formalism of motivic function spaces and higher-dimensional Langlands correspondence;233
10.3.1;2.1 Motivic functions and the tensor category Ck;233
10.3.1.1;Fiber functors for finite fields;234
10.3.1.2;Extensions and variants;234
10.3.1.3;Example: motivic Radon transform;235
10.3.2;2.2 Commutative algebras in Ck;236
10.3.2.1;Elementary examples of algebras;236
10.3.2.2;Categorification;237
10.3.3;2.3 Algebras parameterizing motivic local systems;237
10.3.3.1;Preparations on ramification and motivic local systems;237
10.3.3.2;Conjecture on algebras parameterizing motivic local systems;238
10.3.3.3;Arguments in favor, and extensions;239
10.3.4;2.4 Toward integrable systems over local fields;240
10.4;3 Third proposal: lattice models;242
10.4.1;3.1 Traces depending on two indices;242
10.4.2;3.2 Two-dimensional translation invariant lattice models;243
10.4.2.1;Transfer matrices;244
10.4.3;3.3 Two-dimensional Weil conjecture;245
10.4.4;3.4 Higher-dimensional lattice models and a higher-dimensional Weil conjecture;246
10.4.4.1;Evidence: p-adic Banach lattice models;247
10.4.5;3.5 Tensor category A and the Master Conjecture;248
10.4.5.1;Machine modelling finite fields;251
10.4.6;3.6 Corollaries of the Master Conjecture;251
10.4.6.1;Good sign: Bombieri–Dwork bound;251
10.4.6.2;Bad sign: cohomology theories for motives over finite fields;252
10.5;4 Categorical afterthoughts;252
10.5.1;4.1 Decategorifications of 2-categories;252
10.5.1.1;Noncommutative stable homotopy theory;253
10.5.1.2;Elementary algebraic model of bivariant K-theory;253
10.5.1.3;Noncommutative pure and mixed motives;253
10.5.1.4;Motivic integral operators;254
10.5.1.5;Correspondences for free algebras;254
10.5.2;4.2 Trace of an exchange morphism;254
10.6;References;255
11;PROPped-Up Graph Cohomology;257
11.1;1.1 PROPs, Dioperads, and 12PROPs;259
11.2;1.2 Free PROPs;263
11.3;1.3 From 12PROPs to PROPs;264
11.4;1.4 Quadratic Duality and Koszulness for 12PROPs;267
11.5;1.5 Perturbation Techniques for Graph Cohomology;273
11.6;1.6 Minimal Models of PROPs;279
11.7;1.7 Classical Graph Cohomology;285
11.8;References;288
12;Symboles de Manin et valeurs de fonctions L;290
12.1;1 Introduction;290
12.1.1;1.1 Les symboles de Manin;290
12.1.2;1.2 Analyse de Fourier multiplicative;291
12.1.3;1.3 Interprétation arithmétique;293
12.1.4;1.4 Perspectives;294
12.2;2 Formulaire préliminaire;295
12.2.1;2.1 Suppression des facteurs d'Euler;295
12.2.2;2.2 Opérateurs d'Atkin–Lehner;296
12.2.3;2.3 Torsion des formes modulaires par des caractères quelconques;297
12.2.4;2.4 La torsion des formes modulaires par des caractères de niveaux divisant N;298
12.2.5;2.5 La torsion des formes modulaires par des caractères additifs;299
12.2.6;2.6 Invariants locaux des tordues de formes modulaires, première analyse;299
12.2.7;2.7 Invariants locaux des tordues de formes modulaires, cas de série principale;300
12.2.8;2.8 Invariants locaux des tordues de formes modulaires, cas supercuspidal;301
12.2.9;2.9 Invariants locaux des tordues de formes primitives par torsion, conclusion;301
12.3;3 Le théorème 1 et ses corollaires;301
12.3.1;3.1 La démonstration du théorème 1;301
12.3.2;3.2 Réciproque du corollaire 2 et observations algorithmiques sur les aspects locaux;307
12.3.2.1;a. Les invariants de f en termes de la fonction f;307
12.3.2.2;b. Torsion de f par des caractères tels que N=N;307
12.3.2.3;c. Les invariants locaux des tordues de f par des caractères tels que N=N;308
12.3.2.4;d. Les invariants locaux des tordues de f pour caractère quelconque;308
12.3.2.5;e. Les nombres (f,1) pour caractère de niveau divisant N;308
12.3.2.6;f. Que faire lorsque f n'est pas primitive par torsion ?;308
12.3.3;3.3 Équations fonctionnelles et relations de Manin;309
12.4;4 Produit de formes modulaires;310
12.4.1;4.1 Le produit scalaire de Petersson;310
12.4.2;4.2 La fonction L du carré tensoriel;313
12.5;Références;315
13;Graph Complexes with Loops and Wheels;317
13.1;1 Introduction;317
13.2;2 Dg Props Versus Sheaves of dg Lie Algebras;319
13.3;3 Directed Graph Complexes with Loops and Wheels;335
13.4;4 Examples;348
13.5;5 Wheeled Cyclic Complex;357
13.6;References;359
14;Yang–Mills Theory and a Superquadric;361
14.1;1 Introduction;361
14.2;2 Infinitesimal constructions;365
14.2.1;2.1 Real structure on the Lie algebra gl(4|3);366
14.2.2;2.2 Symmetries of the ambitwistor space;368
14.3;3 Reduced theory;371
14.3.1;3.1 The manifold F;371
14.3.2;3.2 Properties of the manifold F;372
14.4;4 Nonreduced theory;378
14.4.1;4.1 Construction of the algebra A(Z);378
14.4.2;4.2 Proof of the equivalence;379
14.4.3;4.3 Relation between a CR structure on Z and an algebra A(Z);381
14.5;5 Appendix;381
14.5.1;5.1 On the definition of a graded real superspace;381
14.5.2;5.2 On homogeneous CR-structures;383
14.5.3;5.3 General facts about CR structures on supermanifolds;384
14.6;6 Acknowledgments;387
14.7;References;387
15;A Generalization of the Capelli Identity;389
15.1;1 Introduction;389
15.2;2 Identities;392
15.2.1;2.1 The main identity;392
15.2.2;2.2 A presentation as a row determinant of size M+N;393
15.2.3;2.3 A Relation Between Determinants of Sizes M and N;394
15.2.4;2.4 A relation to the Capelli identity;395
15.2.5;2.5 Proof of Theorem 1;396
15.3;3 The (glM,glN) Duality and the Bethe Subalgebras;398
15.3.1;3.1 Bethe subalgebra;398
15.3.2;3.2 The (glM,glN) Duality;400
15.3.3;3.3 Scalar Differential Operators;402
15.3.4;3.4 The Simple Joint Spectrum of the Bethe Subalgebra;403
15.4;References;403
16;Hidden Symmetries in the Theory of Complex Multiplication;405
16.1;0 Introduction;405
16.1.1;0.1 ;405
16.1.2;0.2 ;405
16.1.3;0.3 ;406
16.1.4;0.5 ;407
16.1.5;0.7 Idle speculation;407
16.1.6;0.8 ;408
16.1.7;0.10 ;409
16.1.8;0.12 ;410
16.2;1 Background material;410
16.2.1;1.1 Wreath products and Galois theory;411
16.2.1.1;1.1.1 Notation;411
16.2.1.2;1.1.2 Basic construction;411
16.2.1.3;1.1.5 ;414
16.2.2;1.2 Class Field Theory;416
16.2.2.1;1.2.1 ;416
16.2.2.2;1.2.2 ;416
16.2.2.3;1.2.3 ;417
16.2.2.4;1.2.4 ;417
16.2.3;1.3 CM fields;417
16.2.3.1;1.3.1 Complex conjugations;418
16.2.3.2;1.3.2 Transfer maps;418
16.2.3.3;1.3.3 ;419
16.2.4;1.4 Tate's construction;421
16.2.4.1;1.4.1 Tate's half-transfer;421
16.2.4.2;1.4.2 The Taniyama element;422
16.2.4.3;1.4.3 ;422
16.2.5;1.5 The Serre torus;423
16.2.5.1;1.5.1 ;423
16.2.5.2;1.5.2 ;423
16.2.5.3;1.5.3 ;424
16.2.5.4;1.5.4 ;424
16.2.6;1.6 Universal Taniyama elements , ;425
16.2.6.1;1.6.1 ;425
16.2.6.2;1.6.4 ;426
16.2.7;1.7 The Taniyama group , , ;426
16.2.7.1;1.7.1 ;427
16.2.7.2;1.7.2 ;427
16.2.7.3;1.7.3 ;427
16.2.7.4;1.7.4 ;428
16.2.7.5;1.7.6 ;429
16.3;2 Hidden symmetries in the CM theory;429
16.3.1;2.1 Generalised half-transfer;429
16.3.1.1;2.1.1 ;429
16.3.1.2;2.1.2 Rewriting Tate's Half-Transfer in Terms of s;430
16.3.1.3;2.1.5 Change of s;431
16.3.1.4;2.1.8 Galois functoriality of F"0365F;433
16.3.2;2.2 Generalised Taniyama elements;434
16.3.2.1;2.2.1 ;434
16.3.2.2;2.2.5 Action of AutF-alg(FQ)0 on CM points of Hilbert modular varieties;437
16.3.3;2.3 Generalised universal Taniyama elements;439
16.3.4;2.4 Generalised Taniyama group;440
16.3.4.1;2.4.1 ;440
16.3.4.2;2.4.2 ;441
16.3.4.3;2.4.3 ;441
16.3.4.4;2.4.4 ;442
16.3.4.5;2.4.5 ;442
16.4;References;442
17;Self-Correspondences of K3 Surfaces via Moduli of Sheaves;444
17.1;1 Introduction;444
17.1.1;1.1 Preliminary Notation for Lattices;447
17.2;2 Isomorphisms Between MX (v) and X for a General K3 Surface X and a Primitive Isotropic Mukai Vector v;448
17.3;3 Isomorphisms Between MX (v) and X for X a General K3 Surface with (X)=2;453
17.4;4 Isomorphisms Between MX (v) and X for a General K3 Surface X with (X)3;460
17.5;5 Composing Self-Correspondences of a K3 Surface via Moduli of Sheaves and the General Classification Problem;464
17.5.1;5.1 General Problem of Classifying Self-Correspondences of a K3 Surface via Moduli of Sheaves;466
17.6;References;468
18;Foliations in Moduli Spaces of Abelian Varieties and Dimension of Leaves;470
18.1;1 Notations;472
18.2;2 Computation of the dimension of automorphism schemes;478
18.3;3 Serre-Tate coordinates;481
18.4;4 The dimension of central leaves, the unpolarized case;483
18.5;5 The dimension of central leaves, the polarized case;487
18.6;6 The dimension of Newton polygon strata;493
18.7;7 Some results used in the proofs;496
18.8;8 Some questions and some remarks;502
18.9;References;504
19;Derived Categories of Coherent Sheaves and Triangulated Categories of Singularities;507
19.1;1 Triangulated Categories of Singularities for Graded Algebras;509
19.1.1;1.1 Localization in Triangulated Categories and Semiorthogonal Decomposition;509
19.1.2;1.2 Triangulated Categories of Singularities for Algebras;511
19.1.3;1.3 Morphisms in Categories of Singularities;513
19.2;2 Categories of Coherent Sheaves and Categories of Singularities;515
19.2.1;2.1 Quotient Categories of Graded Modules;515
19.2.2;2.2 Triangulated Categories of Singularities for Gorenstein Algebras;516
19.2.3;2.3 Categories of Coherent Sheaves for Gorenstein Schemes;522
19.3;3 Categories of Graded D-branes of Type B in Landau–Ginzburg Models;526
19.3.1;3.1 Categories of Graded Pairs;526
19.3.2;3.2 Categories of Graded Pairs and Categories of Singularities;528
19.3.3;3.3 Graded D-branes of Type B and Coherent Sheaves;531
19.4;References;533
20;Rankin's Lemma of Higher Genus and Explicit Formulas for Hecke Operators;536
20.1;1 Introduction: Generating Series for the Hecke Operators;536
20.2;2 Results;538
20.2.1;2.1 Preparation: A Formula for the Total Hecke Operator T(p) of Genus 2;538
20.2.2;2.2 Rankin's Generating Series in Genus 2;539
20.2.3;2.3 Symmetric Square Generating Series in Genus 2;541
20.2.4;2.4 Cubic Generating Series in Genus 2;542
20.3;3 Proofs: Formulas for the Hecke Operators of Spg;542
20.3.1;3.1 Satake's Spherical Map ;542
20.3.2;3.2 Use of Andrianov's Generating Series in Genus 2;543
20.3.3;3.3 Rankin's Lemma of Genus 2 (Compare with [Jia96]);543
20.4;4 Relations with L-Functions and Motives for Spn ;545
20.5;5 A Holomorphic Lifting from GSp2 GSp2 to GSp4: A Conjecture;547
20.6;References;555
21;Rank-2 Vector Bundles on ind-Grassmannians;558
21.1;1 Introduction;558
21.2;2 Notation and Conventions;559
21.3;3 The Linear Case;561
21.4;4 Auxiliary Results;564
21.5;5 The Case rkE=2;565
21.6;References;575
22;Massey Products on Cycles of Projective Lines and Trigonometric Solutions of the Yang–Baxter Equations;576
22.1;1 The AYBE and the QYBE;581
22.2;2 Solutions of the AYBE Associated with Simple Vector Bundles on Degenerations of Elliptic Curves;590
22.3;3 Simple Vector Bundles on Cycles of Projective Lines;592
22.4;4 Computation of the Associative r-Matrix Arising as a Massey Product;594
22.5;5 Associative Belavin–Drinfeld Triples Associated with Simple Vector Bundles;598
22.6;6 Solutions of the AYBE and Associative BD-Structures;602
22.7;7 Meromorphic Continuation;610
22.8;8 Classification of Trigonometric Solutions of the AYBE;615
22.9;References;620
23;On Linnik and Selberg's Conjecture About Sums of Kloosterman Sums;621
23.1;1 Statements;621
23.2;2 Proofs;625
23.3;References;636
24;Une Algèbre Quadratique Liée à la Suite de Sturm;638
24.1;§ 1 Introduction;638
24.2;§ 2 Algèbre B;642
24.3;§ 3 Début de la démonstration du théorème 1.5;646
24.4;§ 4 Formule (A);648
24.5;§ 5 Formule (B);649
24.6;§ 1 Nombres (j)i;653
24.7;§ 2 Polynômes d'Euler et fonction hypergéométrique;655
24.8;§ 3 Asymptotiques;657
24.9;Bibliography;660
25;Fields of u-Invariant 2r+1;661
25.1;1 Introduction;661
25.2;2 Elementary Discrete Invariant;662
25.3;3 Generic Points of Quadrics and Chow Groups;669
25.3.1;3.1 Algebraic Cobordisms;670
25.3.2;3.2 Beyond Theorem 3.1;671
25.3.3;3.3 Some Auxiliary Facts;676
25.4;4 Even u-invariants;678
25.5;5 Odd u-invariants;679
25.6;References;684
26;Cubic Surfaces and Cubic Threefolds, Jacobians and Intermediate Jacobians;686
26.1;1 Principally Polarized Abelian Varieties That Admit an Automorphism of Order 3;686
26.2;2 Cubic Threefolds;689
26.3;3 Intermediate Jacobians;690
26.4;References;690
27;De Jong-Oort Purity for p-Divisible Groups;691
27.1;1 Introduction;691
27.2;2 Frobenius Modules;692
27.3;3 Proof of Purity;696
27.4;References;699


"Quotients of Calabi–Yau Varieties(p. 179-180)

J´anos Koll´ar and Michael Larsen

Summary. Let X be a complex Calabi–Yau variety, that is, a complex projective variety with canonical singularities whose canonical class is numerically trivial. Let G be a ?nite group acting on X and consider the quotient variety X/G. The aim of this paper is to determine the place of X/G in the birational classi?cation of varieties. That is, we determine the Kodaira dimension of X/G and decide when it is uniruled or rationally connected. If G acts without ?xed points, then ?(X/G) = ?(X) = 0; thus the interesting case is when G has ?xed points. We answer the above questions in terms of the action of the stabilizer subgroups near the ?xed points. We give a rough classi?cation of possible stabilizer groups which cause X/G to have Kodaira dimension -8 or equivalently (as we show) to be uniruled. These stabilizers are closely related to unitary re?ection groups.

Key words: Calabi–Yau, uniruled, rationally connected, re?ection group

2000 Mathematics Subject Classi?cations: 14J32, 14K05, 20E99 (Primary) 14M20, 14E05, 20F55 (Secondary)

Let X be a Calabi–Yau variety over C, that is, a projective variety with canonical singularities whose canonical class is numericaly trivial. Let G be a ?nite group acting on X and consider the quotient variety X/G. The aim of this paper is to determine the place of X/G in the birational classi?cation of varieties. That is, we determine the Kodaira dimension of X/G and decide when it is uniruled or rationally connected.

If G acts without ?xed points, then ?(X/G) = ?(X) = 0; thus the interesting case is that in which G has ?xed points. We answer the above questions in terms of the action of the stabilizer subgroups near the ?xed points. The answer is especially nice if X is smooth. In the introduction we concentrate on this case. The precise general results are formulated later. Definition 1. Let V be a complex vector space and g ? GL(V ) an element of ?nite order. Its eigenvalues (with multiplicity) can be written as"



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.