Buch, Englisch, 679 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1203 g
With Applications to Statistics
Buch, Englisch, 679 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1203 g
Reihe: Springer Series in Statistics
ISBN: 978-3-031-29038-1
Verlag: Springer
This second edition includes many of the new developments in the field since publication of the first edition in 1996: Glivenko-Cantelli preservation theorems; new bounds on expectations of suprema of empirical processes; new bounds on covering numbers for various function classes; generic chaining; definitive versions of concentration bounds; and new applications in statistics including penalized M-estimation, the lasso, classification, and support vector machines. The approximately 200 additional pages also round out classical subjects, including chapters on weak convergence in Skorokhod space, on stable convergence, and on processes based on pseudo-observations.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Preface (vii)Reading Guide (ix)
Part I: Stochastic Convergence 1.1 Introduction: (1-6) 1.2 Outer Integrals and Measurable Majorants: (7-16) 1.3 Weak Convergence: (17 - 30) 1.4 Product Spaces: (31-35) 1.5 Spaces of Bounded Functions: (36 - 44) 1.6 Spaces of Locally Bounded Functions: (45 - 46) 1.7 The Ball Sigma-Field and Measurability of Suprema: (47 - 50) 1.8 Hilbert Spaces: (51 - 53) 1.9 Convergence: Almost surely and in probability: (54 - 58) 1.10 Convergence: Weak, Almost Uniform, and in Probabil- ity: (59 - 68) 1.11 Re_nements: (69 - 72) 1.12 Uniformity and Metrization: (73 - 76) 1.13 Skorokhod Space (new): (77 - 106) 1.14 Notes: (107 - 111)
Part 2: Empirical Processes: (113 - 370) 2.1 Introduction: (114 - 129) 2.2 Maximal Inequalities and Covering Numbers: (130 - 151) 2.3 Symmetrization and Measurability: (152 - 167) 2.4 Glivenko-Cantelli Theorems: (168 - 174) 2.5 Donsker Theorems: (175 - 181) 2.6 Uniform Entropy Numbers: (182 - 206) 2.7 Entropies of Function Classes (new title): (207 - 238) 2.8 Uniformity in the Underlying Distribution: (239 - 248) 2.9 Multiplier Central Limit Theorems: (249 - 262) 2.10 Permanence of the Glivenko-Cantelli and Donsker Prop- erties: (263 - 279) 2.11 The Central Limit Theorem for Processes: (280 - 299) 2.12 Partial Sum Processes: (300 - 306) 2.13 Other Donsker Classes: (307 - 312) 2.14 Maximal Inequalities and Tail Bounds: (313 - 348) 2.15 Concentration (new): (349 - 362) 2.16 Notes: (363 - 370)
Part 3: Statistical Applications: (371 - 558) 3.1 Introduction: (372 - 377) 3.2 M-Estimators: (378 - 403) 3.3 Z-Estimators: (404 - 415) 3.4 Rates of Convergence: (416 - 456) 3.5 Model Selection (new): (457 - 467) 3.6 Random Sample Size, Poissonization, and Kac Processes: (468 - 473) 3.7 Bootstrap: (474 - 488) 3.8 Two-Sample Problem: (489 - 495) 3.9 Independence Empirical Processes: (496 - 500) 3.10 Delta Method: (501 - 532)) 3.11 Contiguity: (533 - 543) 3.12 Convolution and Minimax Theorems: (544 - 554) 3.13 Random Empirical Processes: (555 - 572) 3.14 Notes: (573 - 579)
Appendix: (581 - 623) A.1 Inequalities: (582 - 589) A.2 Gaussian Processes: (590 - 605) A.3 Rademacher Processes: (606 - 607) A.4 Isoperimetric Inequalities for Product Measures: (608 - 612)) A.5 Some Limit Theorems: (613 - 615) A.6 More Inequalities: (616 - 621) Notes: (622 - 623)
References (637) Author Index (665)Subject Index (669)List of Symbols (676)




