Volchkov | Offbeat Integral Geometry on Symmetric Spaces | E-Book | www.sack.de
E-Book

E-Book, Englisch, 592 Seiten

Volchkov Offbeat Integral Geometry on Symmetric Spaces


2013
ISBN: 978-3-0348-0572-8
Verlag: Birkhäuser Basel
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 592 Seiten

ISBN: 978-3-0348-0572-8
Verlag: Birkhäuser Basel
Format: PDF
Kopierschutz: 1 - PDF Watermark



The book demonstrates the development of integral geometry on domains of homogeneous spaces since 1990. It covers a wide range of topics, including analysis on multidimensional Euclidean domains and Riemannian symmetric spaces of arbitrary ranks as well as recent work on phase space and the Heisenberg group. The book includes many significant recent results, some of them hitherto unpublished, among which can be pointed out uniqueness theorems for various classes of functions, far-reaching generalizations of the two-radii problem, the modern versions of the Pompeiu problem, and explicit reconstruction formulae in problems of integral geometry. These results are intriguing and useful in various fields of contemporary mathematics. The proofs given are 'minimal' in the sense that they involve only those concepts and facts which are indispensable for the essence of the subject. Each chapter provides a historical perspective on the results presented and includes many interesting open problems. Readers will find this book relevant to harmonic analysis on homogeneous spaces, invariant spaces theory, integral transforms on symmetric spaces and the Heisenberg group, integral equations, special functions, and transmutation operators theory.

Volchkov Offbeat Integral Geometry on Symmetric Spaces jetzt bestellen!


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.