Wallraven / He / Lovell | Pattern Recognition and Computer Vision | Buch | 978-981-954394-6 | www.sack.de

Buch, Englisch, 449 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 703 g

Reihe: Lecture Notes in Computer Science

Wallraven / He / Lovell

Pattern Recognition and Computer Vision

8th Asian Conference on Pattern Recognition, ACPR 2025, Gold Coast, QLD, Australia, November 10-13, 2025, Proceedings, Part I
Erscheinungsjahr 2025
ISBN: 978-981-954394-6
Verlag: Springer

8th Asian Conference on Pattern Recognition, ACPR 2025, Gold Coast, QLD, Australia, November 10-13, 2025, Proceedings, Part I

Buch, Englisch, 449 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 703 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-981-954394-6
Verlag: Springer


This two-volume set LNCS 16174-16175 constitutes the refereed proceedings of the 8th Asian Conference on Pattern Recognition, ACPR 2025, held in Gold Coast, QLD, Australia, in November 10–13, 2025.

The 60 full papers presented were carefully reviewed and selected from 118 submissions. The ACPR 2025 Conference focuses on four important areas of pattern recognition: pattern recognition and machine learning; computer vision and robot vision; signal, speech and video processing; and document, media processing and interaction, covering various technical aspects.

Wallraven / He / Lovell Pattern Recognition and Computer Vision jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- Few-Shot Connectivity-Aware Text Line Segmentation in Historical Documents.
.- VeriChain: Reinforced Document Image Forgery Verification via Self-Revealing Reasoning Chain.
.- A Transformer Based Handwriting Recognition System Jointly Using Online and Offline Features.
.- Handwritten Text Image Editing with Diffusion Models and Attention-based Matching.
.- FLUX-Font: Stylized Font Generation Based on Fine-Tuning Pre-trained Diffusion Transformer.
.- FGFENet: Fine-Grained Feature Enhancement Network for Brain Tumor Segmentation.
.- Real-Time, Multi-center, Dual-task-based Cognitive Impairment Screening with Graph Convolutional Neural Networks.
.- Newborn Fingerprint Recognition Using Fingerprint Classification.
.- Robust Gait-Based Disease Estimation Against Occlusion and Distortion via Deep Mutual Learning.
.- Zero-Shot Estimation of Compound Emotional Expressions from Facial Images Using Only Basic Emotional Expression Features.
.- Rank-Aware Sports Scoring: A Learning-to-Rank Approach for Judged Sports.
.- Estimating Learners' Position and Work Time for Teaching Reflection in Agricultural Training.
.- MC2SC: Signal Transformation for Multi-Channel Signal Processing.
.- Optimal Transport Regularization for Speech Text Alignment in Spoken Language Models.
.- ICPCC: Importance-aware Crops Point Cloud Compression.
.- From Coarse to Fine, Easy to Hard: Dual-Progressive 3D Hand Mesh Reconstruction.
.- Hierarchical Spatial Mamba Framework for Point Cloud Classification.
.- Heterogeneous Hierarchical Map Representation For Robotics Using Morse Smale Theory.
.- Efficient Isomorphic Mesh Generation from Point Clouds via Group-wise Implicit Function Networks.
.- DiffS-NOCS: 3D Point Cloud Reconstruction through Coloring Sketches to NOCS Maps Using Diffusion Models.
.- Ensemble-Based Progressive YOLOv11 Framework for Quantitative Analysis of Riverine Environments.
.- XMamba: Fully Enhanced Mamba for X-ray Prohibited Items Detection.
.- DExNet: Combining Observations of Domain Adapted Critics for Leaf Disease Classification with Limited Data.
.- SCReedSolo: A Secure and Robust LSB Image Steganography Framework with Randomized Symmetric Encryption and Reed–Solomon Coding.
.- Finding Outliers in a Haystack: Anomaly Detection for Large Pointcloud Scenes.
.- Rep2Face: Synthetic Face Generation with Identity Representation Sampling.
.- Near Real Time Explainable Detection of Small Objects in Remote Sensing Imagery.
.- Transformer deep learning to detect microsatellite instability using histopathological slides to guide colorectal and endometrial cancer immunotherapy.
.- Facial image aging simulation and domain transformation using generative AI.
.- Do End-to-End TTS Systems Exploit Patterns in Speech?.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.