Wallraven / He / Lovell | Pattern Recognition and Computer Vision | E-Book | www.sack.de
E-Book

E-Book, Englisch, 445 Seiten

Reihe: Lecture Notes in Computer Science

Wallraven / He / Lovell Pattern Recognition and Computer Vision

8th Asian Conference on Pattern Recognition, ACPR 2025, Gold Coast, QLD, Australia, November 10–13, 2025, Proceedings, Part II
Erscheinungsjahr 2025
ISBN: 978-981-954398-4
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark

8th Asian Conference on Pattern Recognition, ACPR 2025, Gold Coast, QLD, Australia, November 10–13, 2025, Proceedings, Part II

E-Book, Englisch, 445 Seiten

Reihe: Lecture Notes in Computer Science

ISBN: 978-981-954398-4
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark



This two-volume set LNCS 16174-16175 constitutes the refereed proceedings of the 8th Asian Conference on Pattern Recognition, ACPR 2025, held in Gold Coast, QLD, Australia, in November 10–13, 2025.

The 60 full papers presented were carefully reviewed and selected from 118 submissions. The ACPR 2025 Conference focuses on four important areas of pattern recognition: pattern recognition and machine learning; computer vision and robot vision; signal, speech and video processing; and document, media processing and interaction, covering various technical aspects.

Wallraven / He / Lovell Pattern Recognition and Computer Vision jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- Origami Crease Recognition for Automatic Folding Diagrams Generation.
.- Lip Shape-aware Word Selection for Lyric Translation.
.- Monocular Gait Video-Based Estimation of Musculoskeletal Disorders Using 3D Skeletal Models.
.- Noisy Labeled Data Classification via Adaptive Model Integration.
.- Mobile Food Calorie Estimation Using Smartphone LiDAR Sensor.
.- Gaze-Based Estimation of Activity Levels in Cooperative Learning Using Camera Images.
.- HOTA: Hierarchical Overlap-Tiling Aggregation for Large-Area 3D Flood Mapping.
.- Quantum Convolutional Neural Network for Image Retrieval.
.- Non-Correlative Feature Interaction for Classification of Real and Fake Scene Images.
.- Selective Freezing of Feature Hierarchies in Deep Models for Machine Unlearning.
.- Deep Learning-Based Restoration of Voice-Converted Audio for Speech and Speaker Recognition.
.- Bringing CLIP to the Edge: A Lightweight Fire Detection System for Real-Time Monitoring with UAV.
.- Estimation of Health-Related Quality of Life from Spinal X-ray Images in Patients with Adult Spinal Deformity.
.- Rime Optimization Algorithm with Kapur's Entropy for Multilevel Segmentation of Retinal Images.
.- A Needle in a Haystack: Finding Contextual Knowledge for Video Question Answering.
.- DDU-Net: A Dempster-Shafer theory-aided Diffusion-based U-Net Model for Microscopic Medical Image Segmentation.
.- Image Recognition Framework via Adaptive Class Descriptions with Vision–Language Models.
.- ReFACTNet: A Recurrent Fast Adaptive Continual Net for Non-Exemplar Online Learning.
.- Towards Farmers' Decision Support: Explainable-by-Design Modeling for Calving Sign Detection in Cattle.
.- Frequency-Guided Adaptive Gradient Attack for Transferable Adversarial Examples.
.- Patch Pruning Strategy Based on Robust Statistical Measures of Attention Weight Diversity in Vision Transformers.
.- Approximating Graph Edit Distance via Differentiable Birkhoff Decompositions.
.- Class-wise Flooding Regularization for Imbalanced Image Classification.
.- Learning Smooth and Coordinated Quadruped Motions via Incremental Foot Position Control.
.- Learning Latent Prior for Rapid Adaptation of Legged Robots to Unexpected Amputation.
.- FungalZSL: Zero-Shot Fungal Classification with Image Captioning Using a Synthetic Data Approach.
.- Training-Free Multi-Style Fusion Through Reference-Based Adaptive Modulation.
.- Wavelet Transfer Network for Image Style Transfer with Applications in Museum Cultural Creative Design.
.- SuperCap: Multi-resolution Superpixel-based Image Captioning.
.- ReCap: Rectified and Comprehensive Video Captioning via Object-Grounded Frame Summarization.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.