E-Book, Englisch, Band 9, 738 Seiten
Wang / Hung / Shammas Advanced Biological Treatment Processes
1. Auflage 2010
ISBN: 978-1-60327-170-7
Verlag: Humana Press
Format: PDF
Kopierschutz: 1 - PDF Watermark
Volume 9
E-Book, Englisch, Band 9, 738 Seiten
Reihe: Handbook of Environmental Engineering
ISBN: 978-1-60327-170-7
Verlag: Humana Press
Format: PDF
Kopierschutz: 1 - PDF Watermark
The past 30 years have seen the emergence of a growing desire worldwide that positive actions be taken to restore and protect the environment from the degrading effects of all forms of pollution-air, water, soil, and noise. Because pollution is a direct or indirect consequence of waste, the seemingly idealistic demand for 'zero discharge' can be construed as an unrealistic demand for zero waste. However, as long as waste continues to exist, we can only attempt to abate the subsequent pollution by converting it to a less noxious form. Three major questions usually arise when a particular type of pollution has been identi?ed: (1) How serious is the pollution? (2) Is the technology to abate it available? and (3) Do the costs of abatement justify the degree of abatement achieved? This book is one of the volumes of the Handbook of Environmental Engineering series. The principal intention of this series is to help readers formulate answers to the last two questions above. The traditional approach of applying tried-and-true solutions to speci?c pollution problems has been a major contributing factor to the success of environmental en- neering, and has accounted in large measure for the establishment of a 'methodology of pollution control. ' However, the realization of the ever-increasing complexity and interrelated nature of current environmental problems renders it imperative that intelligent planning of pollution abatement systems be undertaken.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;9
3;Contributors;21
4;Chapter 1;23
4.1;Principles and Kinetics of Biological Processes;23
4.1.1;1. Introduction;23
4.1.2;2. Basic Microbiology and Kinetics;24
4.1.2.1;2.1. Microbial Growth Requirements;24
4.1.2.1.1;2.1.1. Electron Acceptors;24
4.1.2.1.2;2.1.2. Moisture;25
4.1.2.1.3;2.1.3. Temperature;25
4.1.2.1.4;2.1.4. pH;25
4.1.2.1.5;2.1.5. Nutrients;25
4.1.2.2;2.2. Kinetics of Microbial Growth in an Ideal Medium;26
4.1.2.2.1;2.2.1. Kinetics of Microbial Growth;26
4.1.2.2.2;2.2.2. Microbial Decay and Endogenous Respiration;27
4.1.2.3;2.3. Kinetics of Biological Growth in an Inhibitory Medium;27
4.1.2.4;2.4. Minimum Substrate Concentration;28
4.1.2.5;2.5. Mathematical Approximation for Wastewater Treatment;29
4.1.3;3. Kinetics of Activated Sludge Processes;30
4.1.3.1;3.1. Brief Description of Activated Sludge Processes;30
4.1.3.2;3.2. Kinetics of Completely Mixed Activated Sludge Process;31
4.1.3.2.1;3.2.1. Basic Design Models;31
4.1.3.3;3.3. Oxygen Requirements;37
4.1.3.4;3.4. Biosolids Production;37
4.1.4;4. Factors Affecting the Nitrification Process;39
4.1.4.1;4.1. Factors Affecting the Half-Velocity Coefficient, Ks;40
4.1.4.2;4.2. Factors Affecting the Maximum Rate Constant, k.;42
4.1.4.3;4.3. Design Criteria of Nitrification Systems;49
4.1.4.3.1;4.3.1. Aeration Tank Layout;49
4.1.4.3.2;4.3.2. pH Control;50
4.1.4.3.3;4.3.3. MLSS and MLVSS Concentrations;51
4.1.4.3.4;4.3.4. Aeration Tank Capacity;51
4.1.4.3.5;4.3.5. Oxygen Requirements;53
4.1.4.3.6;4.3.6. Settling Tanks;53
4.1.5;5. Kinetics of the Nitrification Process;54
4.1.5.1;5.1. Analysis of Nitrification Data;54
4.1.5.2;5.2. Allosteric Kinetic Model;55
4.1.5.3;5.3. Application of M–W–C Model to Nitrification;58
4.1.5.4;5.4. Determination of Kinetic Parameters;59
4.1.5.4.1;5.4.1. Dissociation Constants (KR, KT ) and c;61
4.1.5.4.2;5.4.2. Allosteric Constant, L;64
4.1.5.4.3;5.4.3. Number of Binding Sites, n;65
4.1.5.4.4;5.4.4. Maximum Nitrification Rate Constant, k;65
4.1.6;6. Denitrification by Suspended Growth Systems;66
4.1.6.1;6.1. Effect of pH;67
4.1.6.2;6.2. MLSS and MLVSS;67
4.1.6.3;6.3. Effect of Temperature;68
4.1.6.4;6.4. Size of Denitrification Tank;68
4.1.6.5;6.5. Carbonaceous Matter;68
4.1.6.6;6.6. Other Requirements;69
4.1.7;7. Design Examples;71
4.1.7.1;7.1. Example 1;71
4.1.7.2;7.2. Example 2;72
4.1.7.3;7.3. Example 3;73
4.1.7.4;7.4. Example 4;74
4.1.8;Nomenclature;74
4.1.9;References;76
5;Chapter 2;80
5.1;Vertical Shaft Bioreactors;80
5.1.1;1. Process Description;81
5.1.2;2. Technical Development;84
5.1.3;3. Vertreat Bioreactor;88
5.1.3.1;3.1. Key Process Features and Advantages;89
5.1.3.2;3.2. Process Applications;89
5.1.3.3;3.3. Reactor Features;90
5.1.4;4. Process Theory and Design Basis;91
5.1.4.1;4.1. Process Fundamentals;91
5.1.4.2;4.2. Biological Properties;93
5.1.4.3;4.3. Oxygen Transfer;93
5.1.4.4;4.4. Organic Loading;97
5.1.4.5;4.5. Solids Separation;99
5.1.5;5. Variations of the Basic Vsb;100
5.1.5.1;5.1. Single Zone Vertical Shaft Bioreactors;100
5.1.5.2;5.2. Multi-Zone Vertical Shaft Bioreactors;101
5.1.5.3;5.3. Multi-channel Vertical Shaft Bioreactors;101
5.1.5.4;5.4. Multi-Stage Vertical Shaft Bioreactors;102
5.1.5.5;5.5. Thermophilic Vertical Shaft Bioreactors;102
5.1.6;6. Process Design Considerations;102
5.1.7;7. Operation and Maintenance Considerations;105
5.1.8;8. Comparison With Equivalent Technology;106
5.1.8.1;8.1. Equivalent Conventional Concept;106
5.1.8.2;8.2. Land Area;107
5.1.8.3;8.3. Cost;107
5.1.8.4;8.4. Energy;109
5.1.9;9. Case Studies;110
5.1.9.1;9.1. Dairy Plant Wastewater Treatment;110
5.1.9.1.1;9.1.1. Process Description;110
5.1.9.1.2;9.1.2. Plant Loading and BOD Removal;111
5.1.9.1.3;9.1.3. Oxygen Transfer Efficiency and Flotation;112
5.1.9.1.4;9.1.4. Nutrient Limitation;113
5.1.9.1.5;9.1.5. Temperature;114
5.1.9.1.6;9.1.6. VERTREATTM Process Simplicity and Stability;114
5.1.9.2;9.2. Refinery Wastewater Treatment;115
5.1.9.2.1;9.2.1. Plant Description;115
5.1.9.2.2;9.2.2. Treatment Plant Discharge Criteria;119
5.1.9.2.3;9.2.3. BOD5 and TSS Removal Efficiency;119
5.1.9.2.4;9.2.4. Solids Reduction Efficiency in the Aerobic Digester;120
5.1.9.2.5;9.2.5. pH Buffering;120
5.1.9.2.6;9.2.6. Removal of Toxicity and Recalcitrant Compounds;120
5.1.9.2.7;9.2.7. Process Simplicity and Stability;121
5.1.9.3;9.3. Municipal Wastewater Treatment;121
5.1.9.3.1;9.3.1. Plant Description;122
5.1.9.3.2;9.3.2. Plant Design Criteria;122
5.1.9.3.3;9.3.3. Plant Assessment;122
5.1.10;Nomenclature;126
5.1.11;References;126
5.1.12;Appendix;129
6;Chapter 3;130
6.1;Aerobic Granulation Technology;130
6.1.1;1. Introduction;130
6.1.2;2. Aerobic Granulation as A Gradual Process;131
6.1.3;3. Factors Affecting Aerobic Granulation;133
6.1.3.1;3.1. Substrate Composition;133
6.1.3.2;3.2. Organic Loading Rate;134
6.1.3.3;3.3. Hydrodynamic Shear Force;134
6.1.3.4;3.4. Presence of Calcium Ion in Feed;137
6.1.3.5;3.5. Reactor Configuration;137
6.1.3.6;3.6. Dissolved Oxygen;138
6.1.4;4. Microbial Structure and Diversity;138
6.1.4.1;4.1. Characteristics of Aerobic Granule;138
6.1.4.2;4.2. Layered Structure of Aerobic Granules;140
6.1.4.3;4.3. Microbial Diversity of Aerobic Granules;140
6.1.5;5. Mechanism of Aerobic Granulation;141
6.1.6;6. Applications of Aerobic Granulation Technology;142
6.1.6.1;6.1. High-Strength OrganicWastewater Treatment;142
6.1.6.2;6.2. Phenolic Wastewater Treatment;143
6.1.6.3;6.3. Biosorption of Heavy Metals by Aerobic Granules;144
6.1.7;Nomenclature;145
6.1.8;References;145
7;Chapter 4;150
7.1;Membrane Bioreactors;150
7.1.1;1. Introduction;151
7.1.1.1;1.1. General Introduction;151
7.1.1.2;1.2. Historical Development;151
7.1.1.2.1;1.2.1. Membrane Processes;151
7.1.1.2.1.1;1.2.1.1. Microfiltration (MF);151
7.1.1.2.1.2;1.2.1.2. Ultrafiltration (UF);152
7.1.1.2.1.3;1.2.1.3. Nanofiltration (NF);152
7.1.1.2.1.4;1.2.1.4. Reverse Osmosis (RO);152
7.1.1.2.1.5;1.2.1.5. Electrodialysis (ED);152
7.1.1.2.2;1.2.2. Physical–Chemical Pretreatment before Membrane Process;152
7.1.1.2.3;1.2.3. Biological Pretreatment Prior to Membrane Process;153
7.1.1.2.4;1.2.4. Physical–Chemical–Biological Pretreatment Before Membrane Process;155
7.1.1.3;1.3. Membrane Bioreactors Research and Engineering Applications;155
7.1.2;2. Mbr Process Description;158
7.1.2.1;2.1. Membrane Bioreactor with Membrane Module Submerged in the Bioreactor;158
7.1.2.2;2.2. Membrane Bioreactor with Membrane Module Situated Outside the Bioreactor;159
7.1.2.3;2.3. MBR System Features;160
7.1.2.4;2.4. Membrane Module Design Considerations;162
7.1.3;3. Process Comparison;163
7.1.3.1;3.1. Similarity;163
7.1.3.2;3.2. Dissimilarity;165
7.1.3.2.1;3.2.1. Reactor, MLSS, and Space Requirement Comparison;165
7.1.3.2.2;3.2.2. Effluent Quality Comparison;165
7.1.3.2.3;3.2.3. Cost Comparison and Water Recycle Considerations;165
7.1.3.2.4;3.2.4. Waste Treatment Consideration;166
7.1.3.2.5;3.2.5. Summary;166
7.1.4;4. Process Applications;167
7.1.4.1;4.1. Industrial Wastewater Treatment;167
7.1.4.2;4.2. Municipal Wastewater and Leachate Treatments;167
7.1.5;5. Practical Examples;168
7.1.5.1;5.1. Example 1. Dairy Industry;168
7.1.5.2;5.2. Example 2. Landfill Leachate Treatment;169
7.1.5.3;5.3. Example 3. Coffee Industry;171
7.1.6;6. Automatic Control System;172
7.1.6.1;6.1. Example 4. Cosmetics Industry;173
7.1.7;7. Conclusions;174
7.1.7.1;7.1. Industrial Applications;174
7.1.7.2;7.2. Municipal Applications;174
7.1.8;Acknowledgement;174
7.1.9;Commercial Availability;175
7.1.10;References;175
8;Chapter 5;178
8.1;SBR Systems for Biological Nutrient Removal;178
8.1.1;1. Background and Process Description;178
8.1.2;2. Proprietary SBR Processes;180
8.1.2.1;2.1. Aqua SBR;181
8.1.2.2;2.2. Omniflo;182
8.1.2.3;2.3. Fluidyne;183
8.1.2.4;2.4. CASS;183
8.1.2.5;2.5. ICEAS;184
8.1.3;3. Description of A Treatment Plant Using SBR;185
8.1.4;4. Applicability;186
8.1.5;5. Advantages and Disadvantages;186
8.1.5.1;Advantages;186
8.1.5.2;Disadvantages;187
8.1.6;6. Design Criteria;187
8.1.6.1;6.1. Design Parameters;187
8.1.6.2;6.2. Construction;192
8.1.6.3;6.3. Tank and Equipment Description;193
8.1.6.4;6.4. Health and Safety;194
8.1.7;7. Process Performance;194
8.1.8;8. Operation and Maintenance;196
8.1.9;9. Cost;196
8.1.10;10. Packaged SBR for Onsite Systems;198
8.1.10.1;10.1. Typical Applications;199
8.1.10.2;10.2. Design Assumptions;199
8.1.10.3;10.3. Performance;200
8.1.10.4;10.4. Management Needs;200
8.1.10.5;10.5. Risk Management Issues;201
8.1.10.6;10.6. Costs;201
8.1.11;References;201
8.1.12;Appendix;204
9;Chapter 6;205
9.1;Simultaneous Nitrification and Denitrification (SymBioR® Process);205
9.1.1;1. Introduction;206
9.1.2;2. Biological Nitrogen Removal;206
9.1.2.1;2.1. Nitrification;207
9.1.2.2;2.2. Denitrification;207
9.1.2.3;2.3. Simultaneous Nitrification and Denitrification;208
9.1.3;3. Nadh in Cell Metabolism;209
9.1.4;4. The Symbior® Process for Simultaneous Nitrification and Denitrification;212
9.1.4.1;4.1. NADH Proportional Control Strategy;213
9.1.4.2;4.2. NADH Jump Control Strategy;215
9.1.4.3;4.3. Process Design;218
9.1.5;5. Case Studies;221
9.1.5.1;5.1. Big Bear, CA;221
9.1.5.2;5.2. Perris, CA;224
9.1.5.3;5.3. Rochelle, IL;225
9.1.6;6. Conclusion;226
9.1.7;Nomenclature;226
9.1.8;References;227
10;Chapter 7;229
10.1;Single-Sludge Biological Systems for Nutrients Removal;229
10.1.1;1. Introduction;230
10.1.2;2. Classification of Single-Sludge Processes;231
10.1.3;3. Stoichiometric and Kinetic Considerations;233
10.1.3.1;3.1. Routes of Nitrogen Removal in Single-Sludge Systems;233
10.1.3.1.1;3.1.1. Biosolids Synthesis;233
10.1.3.1.2;3.1.2. Substrate Nitrate Respiration;233
10.1.3.1.3;3.1.3. Endogenous Nitrate Respiration (ENR);233
10.1.3.1.4;3.1.4. Adsorbed Carbon Nitrate Respiration;234
10.1.3.2;3.2. Stoichiometric and Metabolic Principles;234
10.1.3.3;3.3. Endogenous Nitrate Respiration (ENR);235
10.1.3.4;3.4. Nitrogen Removal by ENR and Aerobic Sludge Synthesis;237
10.1.3.5;3.5. Nitrogen Removal by Substrate Nitrate Respiration and Anoxic Biosolids Synthesis;239
10.1.3.6;3.6. Design Alternatives for Compartmentalized Aeration Tanks;241
10.1.4;4. Multistage Single Anoxic Zone;242
10.1.4.1;4.1. Background and Process Description;242
10.1.4.2;4.2. Typical Design Criteria;245
10.1.4.3;4.3. Process Performance;246
10.1.4.4;4.4. Process Design Features;248
10.1.5;5. Multistage Multiple Anoxic Zones;249
10.1.5.1;5.1. Background and Process Description;249
10.1.5.2;5.2. Typical Design Criteria;252
10.1.5.3;5.3. Process Performance;253
10.1.5.4;5.4. Process Design Features;256
10.1.6;6. Multiphase Cyclycal Aeration;256
10.1.6.1;6.1. Background and Process Description;256
10.1.6.2;6.2. Typical Design Criteria;258
10.1.6.3;6.3. Process Performance;259
10.1.6.4;6.4. Process Design Features;260
10.1.7;7. Phosphorus Removal By Biological and Physicochemical Technologies;260
10.1.7.1;7.1. Phosphate Biological Uptake at Acid pH;260
10.1.7.2;7.2. Emerging Phosphorus Removal Technologies;260
10.1.8;8. Coxsackie Wastewater Treatment Plant-A Single-Sludge Activated Sludge Plant for Carbonaceous Oxidation, Nitrification, Denitrification, and Phosphorus Removal;262
10.1.8.1;8.1. Background Information;262
10.1.8.2;8.2. Plant Operation and Parameters;262
10.1.8.3;8.3. Performance Results;275
10.1.8.3.1;8.3.1. Carbonaceous Oxidation;275
10.1.8.3.2;8.3.2. Nitrification;279
10.1.8.3.3;8.3.3. Alkalinity Release during Endogenous Nitrate Respiration (ENR);279
10.1.8.3.4;8.3.4. Alkalinity Destroyed During Nitrification;279
10.1.8.3.5;8.3.5. Rates of Nitrification;279
10.1.8.3.6;8.3.6. Rates of Endogenous Nitrate Respiration (Denitrification);280
10.1.8.3.7;8.3.7. Phosphorus Removal;280
10.1.8.4;8.4. Solids Management;281
10.1.8.5;8.5. Sludge Chlorination Treatment;281
10.1.9;Acknowledgment;283
10.1.10;Nomenclature;284
10.1.11;References;284
11;Chapter 8;291
11.1;Selection and Design of Nitrogen Removal Processes;291
11.1.1;1. Factors that Affect Process Selection;291
11.1.1.1;1.1. Wastewater Characteristics;291
11.1.1.2;1.2. Site Constraints;292
11.1.1.3;1.3. Existing Facilities;293
11.1.2;2. Costs;294
11.1.2.1;2.1. Capital Cost;294
11.1.2.2;2.2. Operational Cost;295
11.1.3;3. Design Considerations;295
11.1.3.1;3.1. Primary Settling;295
11.1.3.2;3.2. Aeration Systems;296
11.1.3.3;3.3. Mixers;297
11.1.3.4;3.4. Recycle Pumping;297
11.1.3.5;3.5. Reactor Design;297
11.1.3.6;3.6. Secondary Settling;298
11.1.3.7;3.7. Selectors;298
11.1.4;4. Process Design;299
11.1.4.1;4.1. Introduction;299
11.1.4.2;4.2. Summary of Design Procedures;300
11.1.5;5. Design Examples;301
11.1.5.1;5.1. Introduction;301
11.1.5.2;5.2. Design Example 1: Plant B with Less Stringent Limits;302
11.1.5.3;5.3. Design Example 2: Plant B with more Stringent Limits;310
11.1.5.4;5.4. Design Example 3—Plant A with Less Stringent Limits;314
11.1.5.5;5.5. Design Example 4—Plant A with More Stringent Limits;318
11.1.6;Nomenclature;318
11.1.7;References;320
11.1.8;List of Appendixes;323
11.1.8.1;Appendix A;323
11.1.8.2;Appendix B;324
11.1.8.3;Appendix C;325
11.1.8.4;Appendix D;326
11.1.8.5;Appendix E;328
11.1.8.6;Appendix F;330
11.1.8.7;Appendix G;331
12;Chapter 9;332
12.1;Column Bioreactor Clarifier Process (CBCP);332
12.1.1;1. Background;333
12.1.2;2. Introduction;333
12.1.3;3. Description of Novel Treatment Technology;334
12.1.3.1;3.1. Concepts of Biological Processes;334
12.1.3.2;3.2. Distinction of Biosorption and Oxidation Processes in the Pseudoliquified Activated Sludge Bioreactor;335
12.1.3.3;3.3. Process Configuration;337
12.1.3.4;3.4. Operating Process Parameters;342
12.1.4;4. Development and Implementation of Model Pilot Plant;353
12.1.4.1;4.1. System Capabilities and Need for Technology Refinement;353
12.1.4.2;4.2. Project Objectives;354
12.1.4.3;4.3. Methodology;355
12.1.4.4;4.4. Conceptual and Detailed Design of Mobile Pilot Plant;355
12.1.4.5;4.5. Manufacturing, Installation, and Testing of the Mobile Pilot Plant;357
12.1.4.6;4.6. Development of Sampling and Monitoring Program;357
12.1.4.7;4.7. Testing of the Pilot Plant at Municipal Wastewater Facilities;358
12.1.4.8;4.8. Detailed Analysis of Pilot Plant Testing Data;359
12.1.4.8.1;4.8.1. Commissioning Stage;359
12.1.4.8.2;4.8.2. Optimization of Operational Parameters for Activated Sludge—Clarifier System;362
12.1.4.8.2.1;4.8.2.1. Optimization of Loading Rate;362
12.1.4.8.3;4.8.3. Nutrient Removal;364
12.1.4.8.4;4.8.4. Phosphorus Removal;365
12.1.4.8.5;4.8.5. Achievability of Effluent Criteria;366
12.1.4.8.6;4.8.6. Tertiary Biological Treatment;367
12.1.4.8.6.1;4.8.6.1. System Description and Operational Parameters;367
12.1.4.8.6.2;4.8.6.2. General Performance and Effluent Quality;368
12.1.4.8.7;4.8.7. Process Economics;368
12.1.4.9;4.9. Overall System Performance;369
12.1.4.10;4.10. Municipal and IndustrialWastewater Treatment—Process Applicability;370
12.1.5;5. Computer Modeling;370
12.1.5.1;5.1. Model Descriptions;370
12.1.5.2;5.2. Wastewater Characterization;371
12.1.5.3;5.3. Determination of Model Stoichiometric Coefficients;372
12.1.5.4;5.4. Process Modeling;372
12.1.5.4.1;5.4.1. System Modeling;372
12.1.5.4.2;5.4.2. Scenarios Modeled;376
12.1.5.4.3;5.4.3. Modeling Results;377
12.1.6;6. Summary and Recommendations;379
12.1.7;Nomenclature;380
12.1.8;References;380
13;Chapter 10;383
13.1;Upflow Sludge Blanket Filtration;383
13.1.1;1. Introduction;384
13.1.2;2. Theoretical Principles of Fluidized Bed Filtration;384
13.1.2.1;2.1. Hydrodynamic Similarity and Dimensionless Numbers;384
13.1.2.2;2.2. Characteristics of Granular Porous Medium;385
13.1.2.3;2.3. Flow Through Fixed Porous Medium;386
13.1.2.4;2.4. Filtration;387
13.1.2.5;2.5. Single Particle Sedimentation;388
13.1.2.6;2.6. Turbulent Flow;390
13.1.2.7;2.7. Coagulation;390
13.1.2.8;2.8. Hydrodynamic Disintegration of Aggregates;391
13.1.2.9;2.9. Fluidization in Cylindrical Column;391
13.1.2.10;2.10. Fluidization in Diffuser;394
13.1.2.11;2.11. Upflow Sludge Blanket Filtration;396
13.1.3;3. Principles of Integrated Usbf Reactors Design;398
13.1.3.1;3.1. Types of Sludge Blanket;398
13.1.3.2;3.2. Water Treatment Systems with USBF;400
13.1.4;4. Examples of Usbf Integrated Treatment Reactors Implementation;403
13.1.4.1;4.1. Chemical USBF Integrated Reactors;404
13.1.4.2;4.2. First Generation of Biological USBF Integrated Reactors;406
13.1.4.3;4.3. Second Generation of Biological USBF Integrated Reactor;412
13.1.5;5. Advanced Wastewater Treatment Systems;414
13.1.5.1;5.1. Upgrading of Conventional Municipal WWTP;415
13.1.5.2;5.2. Decentralized Sewerage Systems;419
13.1.5.3;5.3. Wastewater Reclamation and Reuse;421
13.1.6;6. Design Example of Advanced Treatment Systems;424
13.1.6.1;6.1. Upgrading of Classical Municipal WWTP;424
13.1.7;Nomenclature;426
13.1.8;References;428
14;Chapter 11;429
14.1;Anaerobic Lagoons and Storage Ponds;429
14.1.1;1. Introduction;429
14.1.2;2. Process Description;430
14.1.3;3. Applications and Limitations;431
14.1.4;4. Expected Process Performance and Reliability;431
14.1.5;5. Process Design;431
14.1.5.1;5.1. Minimum Treatment Volume;431
14.1.5.2;5.2. Waste Volume for Treatment Period;434
14.1.5.3;5.3. Sludge Volume;434
14.1.5.4;5.4. Lagoon Volume Requirement;435
14.1.5.5;5.5. Anaerobic Lagoon Design Criteria;437
14.1.5.6;5.6. Data Gathering and Compilation for Design;438
14.1.6;6. Energy Consumption and Costs of Anaerobic Lagoons;438
14.1.7;7. Waste Storage Ponds;440
14.1.7.1;7.1. Process Description;440
14.1.7.2;7.2. Process Design;440
14.1.8;8. Design and Application Examples;442
14.1.8.1;8.1. Example 1;442
14.1.8.2;8.2. Example 2;442
14.1.8.3;8.3. Example 3;443
14.1.8.4;8.4. Example 4;445
14.1.8.5;8.5. Example 5;447
14.1.8.6;8.6. Example 6;448
14.1.8.7;8.7. Example 7;448
14.1.9;Nomenclature;449
14.1.10;References;450
15;Chapter 12;451
15.1;Vertical Shaft Digestion, Flotation, and Biofiltration;451
15.1.1;1. Introduction;451
15.1.1.1;1.1. Biosolids Treatment;451
15.1.1.2;1.2. Vertical Shaft Bioreactor and Vertical Shaft Digestion;452
15.1.1.3;1.3. Vertical Shaft Flotation Thickening Process;454
15.1.1.4;1.4. Gas-Phase Biofiltration;454
15.1.1.5;1.5. Biosolids Digestion and Stabilization;455
15.1.1.5.1;1.5.1. Biosolids Quality;455
15.1.1.5.2;1.5.2. Solids Reduction;456
15.1.1.5.3;1.5.3. Digester Capacity;456
15.1.1.5.4;1.5.4. Life Cycle Cost;456
15.1.1.5.5;1.5.5. Energy Management;456
15.1.1.5.6;1.5.6. Operating Characteristics;456
15.1.2;2. Principles of VSD and Optional Anaerobic Digestion;456
15.1.2.1;2.1. Theory and Principles of Aerobic Digestion;456
15.1.2.2;2.2. Theory and Principles of Optional Anaerobic Digestion;458
15.1.2.3;2.3. Combined Vertical Shaft Digestion and Anaerobic Digestion;458
15.1.3;3. Description, Operation, and Applications of VSD System;459
15.1.3.1;3.1. Process Description;459
15.1.3.2;3.2. Process Operation;459
15.1.3.3;3.3. Process Applications;460
15.1.4;4. Design Considerations of A Complete VSD System;461
15.1.4.1;4.1. Autothermal Thermophilic Aerobic Digestion Using Air;461
15.1.4.2;4.2. Autothermal Thermophilic Digestion Using Pure Oxygen;463
15.1.4.3;4.3. Flotation Thickening after Vertical Shaft Digestion;464
15.1.4.4;4.4. Optional Dual Digestion System;465
15.1.4.5;4.5. Biosolids Dewatering Processes;467
15.1.4.6;4.6. Gas-Phase Biofiltration for Air Emission Control;467
15.1.4.6.1;4.6.1. Biofiltration Process Description;468
15.1.4.6.2;4.6.2. Applicability to Air Emission Control;469
15.1.4.6.3;4.6.3. Range of Effectiveness;469
15.1.4.6.4;4.6.4. Sizing Criteria of Biofiltration;470
15.1.4.6.5;4.6.5. Cost Estimating Procedure;471
15.1.4.7;4.7. Operational Controls of Biofiltration;471
15.1.5;5. Case Study;472
15.1.5.1;5.1. Facility Design and Construction;472
15.1.5.2;5.2. Vertical Shaft Digestion Demonstration Plan;475
15.1.5.3;5.3. Design Criteria Development for Vertical Shaft Digestion;476
15.1.5.3.1;5.3.1. Volatile Solids Destruction;476
15.1.5.3.2;5.3.2. Pathogen Destruction;478
15.1.5.3.3;5.3.3. Reactor Mixing;478
15.1.5.3.4;5.3.4. Vertical Shaft Flotation Thickening;480
15.1.5.3.5;5.3.5. Biosolids Dewatering;480
15.1.5.3.6;5.3.6. Organic Nitrogen and FOG Destruction;482
15.1.5.3.7;5.3.7. Biofiltration for Odor and Off-Gas Control;483
15.1.5.3.8;5.3.8. Oxygen Transfer Efficiency;484
15.1.5.3.9;5.3.9. Heat Balance;486
15.1.5.3.10;5.3.10. Vertical Shaft Digestion Process Simplicity and Stability;486
15.1.5.3.11;5.3.11. Vertical Shaft Digestion Followed by Anaerobic Digestion (Dual Digestion);486
15.1.5.3.12;5.3.12. Full-Scale Design and Economics;489
15.1.5.4;5.4. Capital Costs;490
15.1.5.4.1;5.4.1. Operating Costs;490
15.1.6;6. Conclusions;491
15.1.7;References;492
15.1.8;Appendix;495
16;Chapter 13;496
16.1;Land Application of Biosolids;496
16.1.1;1. Introduction;497
16.1.2;2. Recycling of Biosolids Through Land Application;497
16.1.3;3. Description;498
16.1.4;4. Advantages and Disadvantages;499
16.1.5;5. Design Criteria;501
16.1.6;6. Performance;502
16.1.7;7. Costs of Recycling Through Land Application;503
16.1.8;8. Biosolids Disposal on Land (Landfill);504
16.1.9;9. Biosolids Landfill Methods;504
16.1.9.1;9.1. Biosolids-Only Trench Fill;504
16.1.9.1.1;9.1.1. Narrow Trenches;505
16.1.9.1.2;9.1.2. Wide Trenches;506
16.1.9.2;9.2. Biosolids-Only Area Fill;506
16.1.9.2.1;9.2.1. Area Fill Mound;506
16.1.9.2.2;9.2.2. Area Fill Layer;507
16.1.9.2.3;9.2.3. Dike Containment;508
16.1.9.3;9.3. Co-Disposal with Refuse;508
16.1.9.3.1;9.3.1. Biosolids/Refuse Mixture;508
16.1.9.3.2;9.3.2. Biosolids/Soil Mixture;508
16.1.9.4;9.4. Landfilling of Screenings, Grit, and Ash;510
16.1.10;10. Preliminary Planning;510
16.1.10.1;10.1. Biosolids Characterization;510
16.1.10.2;10.2. Selection of a Landfilling Method;511
16.1.10.3;10.3. Site Selection;511
16.1.10.3.1;10.3.1. Site Considerations;512
16.1.10.3.2;10.3.2. Site Selection Methodology;513
16.1.11;11. Facility Design;514
16.1.11.1;11.1. Regulations and Standards;514
16.1.11.2;11.2. Site Characteristics;515
16.1.11.3;11.3. Landfill Type and Design;516
16.1.11.4;11.4. Ancillary Facilities;516
16.1.11.5;11.5. Landfill Equipment;519
16.1.11.6;11.6. Flexibility, Performance, and Environmental Impacts;519
16.1.12;12. Operation and Maintenance;519
16.1.12.1;12.1. Operations Plan;521
16.1.12.2;12.2. Operating Schedule;521
16.1.12.3;12.3. Equipment Selection and Maintenance;521
16.1.12.4;12.4. Management and Reporting;523
16.1.12.5;12.5. Safety;523
16.1.12.6;12.6. Environmental Controls;523
16.1.13;13. Site Closure;524
16.1.13.1;13.1. Ultimate Use;525
16.1.13.2;13.2. Grading at Completion of Filling;525
16.1.13.3;13.3. Landscaping;525
16.1.13.4;13.4. Continued Leachate and Gas Control;525
16.1.14;14. Costs of Biosolids Disposal on Land (Landfill);525
16.1.14.1;14.1. General;525
16.1.14.2;14.2. Hauling of Biosolids;526
16.1.14.2.1;14.2.1. Required Input Data;526
16.1.14.2.2;14.2.2. Design Parameters;526
16.1.14.2.3;14.2.3. Design Procedure;526
16.1.14.2.4;14.2.4. Output Data;528
16.1.14.3;14.3. Energy Requirements;528
16.1.14.4;14.4. Costs;529
16.1.15;15. Examples;529
16.1.15.1;15.1. Example 1. Typical Biosolids Application Rate Scenario;529
16.1.15.2;15.2. Example 2. Hauling of Biosolids;532
16.1.16;Nomenclature;533
16.1.17;References;533
16.1.18;Appendix;537
17;Chapter 14;538
17.1;Deep-Well Injection forWaste Management;538
17.1.1;1. Introduction;539
17.1.2;2. Regulations for Managing Injectionwells;540
17.1.3;3. Basic Well Designs;543
17.1.4;4. Evaluation of A Proposed Injection Well Site;549
17.1.4.1;4.1. Confinement Conditions;550
17.1.4.2;4.2. Potential Receptor Zones;551
17.1.4.3;4.3. Subsurface Hydrodynamics;552
17.1.5;5. Potential Hazards-Ways to Prevent, Detect, and Correct Them;554
17.1.5.1;5.1. Fluid Movement during Construction, Testing, and Operation of the System;554
17.1.5.2;5.2. Failure of the Aquifer to Receive and Transmit the Injected Fluids;555
17.1.5.3;5.3. Failure of the Confining Layer;555
17.1.5.4;5.4. Failure of an Individual Well;557
17.1.5.5;5.5. Failures Because of Human Error;557
17.1.6;6. Economic Evaluation of A Proposed Injection Well System;558
17.1.7;7. Use of Injection Wells in Wastewater Management;558
17.1.7.1;7.1. Reuse for Engineering Purposes;559
17.1.7.2;7.2. InjectionWells as a Part of the Treatment System;559
17.1.7.3;7.3. Storage of Municipal Wastewaters for Reuse;560
17.1.7.4;7.4. Storage of IndustrialWastewaters;560
17.1.7.5;7.5. Disposal of Municipal and Industrial Sludges;561
17.1.8;8. Use of Injection Wells for Hazardous Wastes Management;561
17.1.8.1;8.1. Identification of HazardousWastes;562
17.1.8.1.1;(a) Toxicity;562
17.1.8.1.2;(b) Reactivity;562
17.1.8.1.3;(c) Corrosivity;563
17.1.8.1.4;(d) Ignitability;563
17.1.8.2;8.2. Sources, Amounts and Composition of InjectedWastes;563
17.1.8.3;8.3. Geographic Distribution of Wells;566
17.1.8.4;8.4. Design and Construction of Wells;566
17.1.8.4.1;8.4.1. Surface Equipment Used in Waste Disposal;566
17.1.8.4.2;8.4.2. Injection-Well Construction;567
17.1.8.5;8.5. Disposal of Radioactive Wastes;568
17.1.9;9. Protection of Usable Aquifers;570
17.1.9.1;9.1. Pathway 1: Migration of Fluids through a Faulty InjectionWell Casing;570
17.1.9.2;9.2. Pathway 2: Migration of Fluids Upward Through the Annulus between the Casing and the Well Bore;571
17.1.9.3;9.3. Pathway 3: Migration of Fluids from an Injection Zone through the Confining Strata;572
17.1.9.4;9.4. Pathway 4: Vertical Migration of Fluids through Improperly Abandoned or Improperly Completed Wells;574
17.1.9.5;9.5. Pathway 5: Lateral Migration of Fluids from Within an Injection Zone into a Protected Portion of Those Strata;577
17.1.9.6;9.6. Pathway 6: Direct Injection of Fluids into or Above an Underground Source of Drinking Water;579
17.1.10;10. Case Studies of Deep Well Injection;580
17.1.10.1;10.1. Case Study 1: Pensacola, FL (Monsanto);581
17.1.10.1.1;10.1.1. Injection-Facility Overview;581
17.1.10.1.2;10.1.2. Injection/Confining-Zone Lithology and Chemistry;582
17.1.10.1.3;10.1.3. Chemical Processes Observed;582
17.1.10.2;10.2. Case Study 2: Belle Glade, FL;584
17.1.10.2.1;10.2.1. Injection-Facility Overview;584
17.1.10.2.2;10.2.2. Injection/Confining-Zone Lithology and Chemistry;585
17.1.10.2.3;10.2.3. Chemical Processes Observed;585
17.1.10.3;10.3. Case Study 3: Wilmington, NC;586
17.1.10.3.1;10.3.1. Injection-Facility Overview;586
17.1.10.3.2;10.3.3. Chemical Processes Observed;588
17.1.11;11. Practical Examples;588
17.1.11.1;11.1. Example 1;588
17.1.11.2;11.2. Example 2;590
17.1.11.3;11.3. Example 3;590
17.1.11.4;11.4. Example 4;591
17.1.11.5;11.5. Example 5;592
17.1.11.6;11.6. Example 6;592
17.1.12;Nomenclature;592
17.1.13;References;593
17.1.14;Appendix;599
18;Chapter 15;600
18.1;Natural Biological Treatment Processes;600
18.2;1. Aquaculture Treatment: Water Hyacinth System;600
18.2.1;1.1. Description;600
18.2.2;1.2. Applications;601
18.2.3;1.3. Limitations;602
18.2.4;1.4. Design Criteria;602
18.2.5;1.5. Performance;602
18.3;2. Aquaculture Treatment: Wetland System;603
18.3.1;2.1. Description;603
18.3.2;2.2. Constructed Wetlands;604
18.3.3;2.3. Applications;605
18.3.4;2.4. Limitations;606
18.3.5;2.5. Design Criteria;606
18.3.6;2.6. Performance;606
18.4;3. Evapotranspiration System;607
18.4.1;3.1. Description;607
18.4.2;3.2. Applications;609
18.4.3;3.3. Limitations;610
18.4.4;3.4. Design Criteria;610
18.4.5;3.5. Performance;610
18.4.6;3.6. Costs;610
18.5;4. Land Treatment: Rapid Rate System;611
18.5.1;4.1. Description;612
18.5.2;4.2. Applications;613
18.5.3;4.3. Limitations;613
18.5.4;4.4. Design Criteria;613
18.5.5;4.5. Performance;614
18.5.6;4.6. Costs;615
18.6;5. Land Treatment: Slow Rate System;616
18.6.1;5.1. Description;616
18.6.2;5.2. Applications;617
18.6.3;5.3. Limitations;618
18.6.4;5.4. Design Criteria;619
18.6.5;5.5. Performance;619
18.6.6;5.6. Costs;620
18.7;6. Land Treatment: Overland Flow System;622
18.7.1;6.1. Description;622
18.7.2;6.2. Application;623
18.7.3;6.3. Limitations;623
18.7.4;6.4. Design Criteria;623
18.7.5;6.5. Performance;624
18.7.6;6.6. Costs;624
18.8;7. Subsurface Infiltration;626
18.8.1;7.1. Description;626
18.8.2;7.2. Applications;629
18.8.3;7.3. Limitations;629
18.8.4;7.4. Design Criteria;629
18.8.5;7.5. Performance;630
18.9;References;630
18.10;Appendix;634
19;Chapter 16;635
19.1;Emerging Suspended-Growth Biological Processes;635
19.1.1;1. Powdered Activated Carbon Treatment (PACT);635
19.1.1.1;1.1. Types of PACT Systems;635
19.1.1.2;1.2. Applications and Performance;636
19.1.1.3;1.3. Process Equipment;639
19.1.1.4;1.4. Process Limitations;639
19.1.2;2. Carrier-Activated Sludge Processes (Captor and Castsystems);639
19.1.2.1;2.1. Advantages of Biomass Carrier Systems;639
19.1.2.2;2.2. The CAPTOR Process;640
19.1.2.3;2.3. Development of CAPTOR Process;640
19.1.2.4;2.4. Pilot-Plant Study;640
19.1.2.5;2.5. Full-Scale Study of CAPTOR and CAST;640
19.1.2.5.1;2.5.1. Full-Scale Plant Initial Results;642
19.1.2.5.2;2.5.2. Pilot-Scale Studies for Project Development;642
19.1.2.5.3;2.5.3. Full-Scale Plant Results after Modifications;645
19.1.2.5.4;2.5.4. Overall Conclusions;648
19.1.3;3. Activated Bio-Filter (ABF);648
19.1.3.1;3.1. Description;648
19.1.3.2;3.2. Applications;649
19.1.3.3;3.3. Design Criteria;650
19.1.3.4;3.4. Performance;650
19.1.4;4. Vertical Loop Reactor (VLR);650
19.1.4.1;4.1. Description;650
19.1.4.2;4.2. Applications;651
19.1.4.3;4.3. Design Criteria;652
19.1.4.4;4.4. Performance;652
19.1.4.5;4.5. EPA Evaluation of VLR;653
19.1.4.6;4.6. Energy Requirements;654
19.1.4.7;4.7. Costs;654
19.1.5;5. Phostrip Process;654
19.1.5.1;5.1. Description;654
19.1.5.2;5.2. Applications;656
19.1.5.3;5.3. Design Criteria;657
19.1.5.4;5.4. Performance;657
19.1.5.5;5.5. Cost;657
19.1.5.5.1;5.5.1. Construction Cost;657
19.1.5.5.2;5.5.2. Operation and Maintenance Cost;657
19.1.6;Nomenclature;659
19.1.7;References;660
19.1.8;Apendix;664
20;Chapter 17;665
20.1;Emerging Attached-Growth Biological Processes;665
20.2;1. Fluidized Bed Reactors (Fbr);665
20.2.1;1.1. FBR Process Description;666
20.2.2;1.2. Process Design;667
20.2.3;1.3. Applications;667
20.2.4;1.4. Design Considerations;669
20.2.5;1.5. Case Study: Reno-Sparks WWTP;669
20.3;2. Packed Bed Reactor (PBR);670
20.3.1;2.1. Aerobic PBR;670
20.3.2;2.2. Anaerobic Denitrification PBR;672
20.3.2.1;2.2.1. Coarse Media Beds;672
20.3.2.2;2.2.2. Fine Media Beds;673
20.3.3;2.3. Applications;674
20.3.4;2.4. Design Criteria;674
20.3.4.1;2.4.1. Coarse Media Beds;674
20.3.4.2;2.4.2. Fine Media Beds;674
20.3.5;2.5. Performance;676
20.3.6;2.6. Case Study: Hookers Point WWTP (Tampa Florida);677
20.3.7;2.7. Energy Requirement;679
20.3.7.1;2.7.1. Coarse Media Beds;679
20.3.7.2;2.7.2. Fine Media Beds;679
20.3.8;2.8. Costs;680
20.3.8.1;2.8.1. Coarse Media Beds;680
20.3.8.2;2.8.2. Fine Media Beds;680
20.4;3. Biological Aerated Filter (BAF);681
20.4.1;3.1. BAF Process Description;681
20.4.2;3.2. Applications;683
20.4.3;3.3. BAF Media;683
20.4.4;3.4. Process Design and Performance;684
20.4.5;3.5. Solids Production;687
20.5;4. Hybrid Biological-Activated Carbon Systems;688
20.5.1;4.1. General Introduction;688
20.5.2;4.2. Downflow Conventional Biological GAC Systems;688
20.5.2.1;4.2.1. Introduction;688
20.5.2.2;4.2.2. Saskatchewan-Canada Biological GAC Filtration Plant for Biological Treatment of Drinking Water;689
20.5.2.3;4.2.3. Ngau Tam Mei Water Works, Hong Kong, China;690
20.5.3;4.3. Upflow Fluidized Bed Biological GAC System (FBB-GAC);691
20.6;References;692
20.7;Appendix;697
21;Appendix: Conversion Factors for Environmental Engineers;698
21.1;1. Constants and Conversion Factors;699
21.2;2. Basic and Supplementary Units;739
21.3;3. Derived Units and Quantities;740
21.4;4. Physical Constants;742
21.5;5. Properties of Water;742
21.6;6. Periodic Table of The Elements (Compliments of The Lenox Institute of Water Technology);743
22;Index;744




