E-Book, Englisch, Band 5, 710 Seiten
Wang / Hung / Shammas Advanced Physicochemical Treatment Technologies
1. Auflage 2007
ISBN: 978-1-59745-173-4
Verlag: Humana Press
Format: PDF
Kopierschutz: 1 - PDF Watermark
Volume 5
E-Book, Englisch, Band 5, 710 Seiten
Reihe: Handbook of Environmental Engineering
ISBN: 978-1-59745-173-4
Verlag: Humana Press
Format: PDF
Kopierschutz: 1 - PDF Watermark
In Advanced Physiochemical Treatment Technologies, leading pollution control educators and practicing professionals describe how various combinations of different cutting-edge process systems can be arranged to solve air, noise, and thermal pollution problems. Each chapter discusses in detail the three basic forms in which pollutants and waste are manifested: gas, solid, and liquid. There is an extensive collection of design examples and case histories.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;5
2;Contents;8
3;Contributors;16
4;1 Pressurized Ozonation;18
4.1;1. INTRODUCTION;18
4.1.1;1.1. Oxyozosynthesis Sludge Management System;19
4.1.2;1.2. Oxyozosynthesis Wastewater;22
4.2;2. DESCRIPTION OF PROCESSES;24
4.2.1;2.1. Ozonation and Oxygenation Process;24
4.2.2;2.2. Flotation Process;26
4.2.3;2.3. Filter Belt Press;30
4.2.4;2.4. Performance of Oxyozosynthesis Sludge Management System;33
4.2.5;2.5. Performance of Oxyozosynthesis Wastewater;35
4.2.6;7.2. Ozone Reaction with Organic;55
4.2.7;8.2. Ozonation Systems;63
4.2.8;8.3. Removal of Pollutants from;65
4.3;3. FORMATION AND GENERATION OF OZONE;35
4.3.1;3.1. Formation of Ozone;35
4.3.2;3.2. Generation of Ozone;36
4.4;4. REQUIREMENTS FOR OZONATION EQUIPMENT;39
4.4.1;4.1. Feed Gas Equipment;40
4.4.2;4.2. Ozone Generators;41
4.4.3;4.3. Ozone Contactors;41
4.5;NOMENCLATURE;67
4.6;ACKNOWLEDGMENTS;67
4.7;REFERENCES;67
5;2 Electrochemical Wastewater Treatment Processes;73
5.1;1. INTRODUCTION;73
5.2;2. ELECTROCHEMICAL;74
5.2.1;2.1. Typical;74
5.2.2;2.2. Electrode;80
5.2.3;2.3. Application Areas;80
5.3;3. ELECTROCOAGULATION;80
5.3.1;3.1. Factors Affecting;82
5.3.2;3.2. Electrode;85
5.3.3;3.3. Typical;85
5.3.4;3.4. Effluents;86
5.4;4. ELECTROFLOTATION;86
5.4.1;4.1. Factors Affecting;87
5.4.2;4.2. Comparison with Other Flotation Technologies;92
5.4.3;4.3. Oxygen Evolution Electrodes;92
5.4.4;4.4. Typical;93
5.4.5;4.5. Wastewaters;96
5.5;5. ELECTRO-OXIDATION;96
5.5.1;5.1. Indirect;98
5.5.2;5.2. Direct;98
5.5.3;5.3. Typical;109
5.6;6. SUMMARY;109
5.7;NOMENCLATURE;111
5.8;REFERENCES;111
6;3 Irradiation;123
6.1;1. INTRODUCTION;123
6.1.1;1.1. Disinfection and Irradiation;123
6.1.2;1.2. Pathogenic Organisms;124
6.1.3;1.3. Pathogen Occurrence;124
6.1.4;1.4. Potential Human Exposure;124
6.2;2. PATHOGENS;125
6.2.1;2.1. Viruses;125
6.2.2;2.2. Bacteria;126
6.2.3;2.3. Parasites;126
6.2.4;2.4. Fungi;128
6.3;3. SOLID SUBSTANCES;128
6.3.1;3.1. Long-Term;128
6.3.2;3.2. Chemical Disinfection;128
6.3.3;3.3. Low-Temperature;129
6.3.4;3.4. High-Temperature;130
6.3.5;3.5. Composting;130
6.3.6;3.6. High-Energy;131
6.4;4. DISINFECTION WITH ELECTRON IRRADIATION;131
6.4.1;4.1. Electron;131
6.4.2;4.2. Electron;133
6.4.3;4.3. Electron;134
6.4.4;4.4. Electron;134
6.5;5. DISINFECTION WITH;135
6.5.1;5.1. Irradiation Systems and Process;135
6.5.2;5.2. Irradiation Design Considerations;138
6.5.3;5.3. Irradiation Operational Considerations;140
6.6;6. X-RAY FACILITIES;142
6.7;7. NEW APPLICATIONS;142
6.7.1;7.1. Food Disinfection by Irradiation;142
6.7.2;7.2. Hospital Waste;144
6.7.3;7.3. Mail Irradiation;146
6.8;8. GLOSSARY;146
6.9;REFERENCES;148
7;4 Nonthermal Plasma Technology;151
7.1;1. FUNDAMENTAL;151
7.1.1;1.1. Definition and Characteristics of Plasma;151
7.1.2;1.2. Generation of Plasma;161
7.1.3;1.3. Analysis and Diagnosis of Nonthermal Plasma;181
7.2;2. ENVIRONMENTAL;189
7.2.1;2.1. Electrostatic;189
7.2.2;2.2. Combustion Flue Gas Treatment;199
7.2.3;2.3. Nonthermal Plasma Application for Detoxification;212
7.2.4;2.4. Air Cleaner for Odor Control;215
7.2.5;2.5. Ozone Synthesis and Applications;222
7.2.6;2.6. Decomposition of Freon;228
7.2.7;2.7. Diesel Engine Exhaust Gas Treatment;231
7.2.8;2.8. Gas Concentration Using Nonthermal Plasma Desorption;255
7.2.9;2.9. Emission Gas Decomposition in Semiconductor Manufacturing Process;263
7.3;3. SURFACE;272
7.3.1;3.1. RF;272
7.3.2;3.2. Surface Modification for Substrate;273
7.3.3;3.3. Surface Modification for Glass;277
7.3.4;3.4. Surface Modification for Polymer or Cloth;282
7.3.5;3.5. Surface Modification for Metal;287
7.4;NOMENCLATURE;293
7.5;REFERENCES;296
8;5 Thermal Distillation and Electrodialysis Technologies for Desalination;310
8.1;1. INTRODUCTION;310
8.2;2. THERMAL;316
8.2.1;2.1. Introduction;316
8.2.2;2.2. Working;317
8.2.3;2.3. Multistage Flash Distillation;319
8.2.4;2.4. Multieffect;319
8.2.5;2.5. Vapor;322
8.2.6;2.6. Solar Desalination;322
8.2.7;2.7. Important Issues in Design (O&M);326
8.3;3. ELECTRODIALYSIS;327
8.3.1;3.1. Introduction;327
8.3.2;3.2. Mechanisms;327
8.3.3;3.3. Important Issues in Design;329
8.3.4;3.4. Electrodialysis;332
8.3.5;3.5. Electrodeionization;334
8.4;4. REVERSE OSMOSIS;336
8.5;5. ENERGY;337
8.6;6. ENVIRONMENTAL;339
8.7;NOMENCLATURE;340
8.8;REFERENCES;341
9;6 Reverse Osmosis Technology for Desalination;343
9.1;1. INTRODUCTION;343
9.2;2. MEMBRANE FILTRATION;344
9.2.1;2.1. Osmosis and RO;344
9.2.2;2.2. Membranes;346
9.2.3;2.3. Membrane Filtration Theory;348
9.2.4;2.4. Concentration Polarization;352
9.2.5;2.5. Compaction;353
9.3;3. MEMBRANE MODULES AND PLANT CONFIGURATION;354
9.3.1;3.1. Membrane Modules;354
9.3.2;3.2. Plant Configuration of Membrane Modules;357
9.4;4. PRETREATMENT;360
9.4.1;4.1. Mechanisms of Membrane Fouling;360
9.4.2;4.2. Feed Pretreatment;363
9.4.3;4.3. Membrane Cleaning and Regeneration;368
9.5;5. CASE STUDY;373
9.5.1;5.1. Acidification and Scale Prevention;373
9.5.2;5.2. Cartridge Filters for Prefiltration;373
9.5.3;5.4. Neutralization and Posttreatment;375
9.5.4;5.5. Total;376
9.6;NOMENCLATURE;376
9.7;REFERENCES;377
10;7 Emerging Biosorption, Adsorption, Ion Exchange, and Membrane Technologies;381
10.1;1. INTRODUCTION;381
10.2;2. EMERGING BIOSORPTION FOR HEAVY;381
10.2.1;2.1. Biosorption Chemistry;382
10.2.2;2.2. Biosorption Process;383
10.2.3;2.3. Biosorption Mathematical Modeling;386
10.3;3. MAGNETIC ION EXCHANGE PROCESS;388
10.4;4. LIQUID MEMBRANE PROCESS;391
10.4.1;4.1. Introduction;391
10.4.2;4.2. Mechanism;391
10.4.3;4.3. Applications;392
10.5;5. EMERGING TECHNOLOGIES FOR ARSENIC REMOVAL;394
10.5.1;5.1. Precipitation–Coagulation, Sedimentation, and Flotation;394
10.5.2;5.2. Electrocoagulation;395
10.5.3;5.3. Adsorption;396
10.5.4;5.4. Ion Exchange;400
10.5.5;5.5. Membrane Filtration;400
10.6;NOMENCLATURE;401
10.7;REFERENCES;401
11;8 Fine Pore Aeration of Water and Wastewater;405
11.1;1. INTRODUCTION;405
11.2;2. DESCRIPTION;406
11.3;3. TYPES OF FINE PORE MEDIA;407
11.3.1;3.1. Ceramics;408
11.3.2;3.2. Porous;409
11.3.3;3.3. Perforated Membranes;410
11.4;4. TYPES OF FINE PORE DIFFUSERS;412
11.4.1;4.1. Plate Diffusers;412
11.4.2;4.2. Tube;414
11.4.3;4.3. Dome Diffusers;416
11.4.4;4.4. Disc Diffusers;417
11.5;5. DIFFUSER LAYOUT;421
11.5.1;5.1. Plate Diffusers;422
11.5.2;5.2. Tube;423
11.5.3;5.3. Disc and Dome Diffusers;424
11.6;6. CHARACTERISTICS OF FINE PORE MEDIA;425
11.6.1;6.1. Physical Description;425
11.6.2;6.2. Dimensions;425
11.6.3;6.3. Weight;426
11.6.4;6.4. Permeability;426
11.6.5;6.5. Perforation Pattern;427
11.6.6;6.6. Strength;427
11.6.7;6.7. Hardness;428
11.6.8;6.8. Environmental;428
11.6.9;6.9. Miscellaneous Physical Properties;429
11.6.10;6.10. Oxygen Transfer;429
11.6.11;6.11. Dynamic Wet Pressure;430
11.6.12;6.12. Bubble Release Vacuum;433
11.6.13;6.13. Uniformity;434
11.7;7. PERFORMANCE IN CLEAN WATER;436
11.7.1;7.1. Steady-State DO Saturation Concentration ;437
11.7.2;7.2. Oxygen Transfer;438
11.8;8. PERFORMANCE IN PROCESS WATER;446
11.8.1;8.1. Performance;446
11.8.2;8.2. Factors Affecting;453
11.8.3;8.3. Operation and Maintenance;455
11.9;NOMENCLATURE;456
11.10;REFERENCES;457
12;9 Emerging Flotation Technologies;463
12.1;1. MODERN FLOTATION;464
12.2;2. GROUNDWATER;466
12.3;3. TEXTILE MILLS EFFLUENT TREATMENT;473
12.4;4. PETROLEUM REFINERY;473
12.5;5. AUTO AND LAUNDRY;474
12.6;6. SEAFOOD PROCESSING WASTEWATER;476
12.7;7. STORM RUNOFF TREATMENT;478
12.8;8. INDUSTRIAL EFFLUENT TREATMENT BY BIOLOGICAL PROCESS USING DAF FOR SECONDARY FLOTATION CLARIFICATION;479
12.9;9. INDUSTRIAL RESOURCE RECOVERY USING DAF FOR PRIMARY FLOTATION CLARIFICATION;481
12.10;10. FIRST AMERICAN FLOTATION–FILTRATION PLANT FOR WATER PURIFICATION—LENOX WATER TREATMENT PLANT, MA, USA;483
12.11;11. ONCE THE WORLD’S LARGEST POTABLE FLOTATION–FILTRATION PLANT—PITTSFIELD WATER TREATMENT PLANT, MA, USA;485
12.12;12. THE LARGEST POTABLE FLOTATION–FILTRATION PLANT IN THE CONTINENT OF NORTH AMERICA—TABLE ROCK AND NORTH SALUDA WATER TREATMENT PLANT, SC, USA;487
12.13;13. EMERGING DAF PLANTS—AQUADAF™;488
12.14;14. EMERGING FULL-SCALE ANAEROBIC BIOLOGICAL FLOTATION— KASSEL, GERMANY;490
12.15;15. EMERGING DISSOLVED GAS FLOTATION AND SEQUENCING BATCH REACTOR (DGF–SBR);492
12.16;16. APPLICATION OF COMBINED PRIMARY FLOTATION CLARIFICATION AND SECONDARY FLOTATION CLARIFICATION FOR TREATMENT OF DAIRY EFFLUENTS—A UK CASE HISTORY;493
12.17;17. RECENT DAF DEVELOPMENTS;494
12.18;REFERENCES;495
13;10 Endocrine Disruptors;499
13.1;1. INTRODUCTION;499
13.2;2. ENDOCRINE SYSTEM AND ENDOCRINE DISRUPTORS;501
13.2.1;2.1. The Endocrine System;501
13.2.2;2.2. Endocrine Disruptors;501
13.3;3. DESCRIPTIONS OF SPECIFIC EDCs;502
13.3.1;3.1. Pesticide Residues;502
13.3.2;3.2. Highly Chlorinated Compounds;505
13.3.3;3.3. Alkylphenols and Alkylphenol Ethoxylates;508
13.3.4;3.4. Plastic Additives;509
13.4;4. WATER;510
13.4.1;4.1. Granular Activated Carbon;510
13.4.2;4.2. Powdered;512
13.4.3;4.3. Coagulation/Filtration;512
13.4.4;4.4. Lime Softening;512
13.5;5. POINT-OF-USE/POINT-OF-ENTRY TREATMENTS;513
13.6;6. WATER;513
13.6.1;6.1. Methoxychlor;513
13.6.2;6.2. Endosulfan;514
13.6.3;6.3. DDT;514
13.6.4;6.4. Diethyl Phthalate;514
13.6.5;6.5. Di-(2ethylhexyl) Phthalate;514
13.6.6;6.6. Polychlorinated Biphenyls;514
13.6.7;6.7. Dioxin;514
13.6.8;6.8. Alkylphenols and Alkylphenol Ethoxylates;515
13.7;NOMENCLATURE;515
13.8;REFERENCES;515
14;11 Filtration Systems for Small Communities;519
14.1;1. INTRODUCTION;519
14.2;2. OPERATING;519
14.3;3. SDWA;520
14.4;4. FILTRATION;520
14.5;5. COMMON TYPES OF WATER;521
14.5.1;5.1. Process;522
14.5.2;5.2. Operation and Maintenance Requirements;526
14.5.3;5.3. Technology;526
14.5.4;5.4. Financial Considerations;527
14.6;6. OTHER FILTRATION;528
14.6.1;6.1. Direct;528
14.6.2;6.2. Membrane Processes;528
14.6.3;6.3. Bag and Cartridge Type;530
14.6.4;6.4. Summary of Compliance Technologies;533
14.7;7. CASE STUDIES OF SMALL;533
14.7.1;7.1. Case Study of Westfir,;533
14.7.2;7.2. Mockingbird Hill, Arkansas, Case Study;538
14.8;8. INTERMITTENT SAND FILTERS;541
14.8.1;8.1. Technology;541
14.8.2;8.2. Process;541
14.8.3;8.3. Operation and Maintenance (O&M) Requirements;543
14.8.4;8.4. Technology;543
14.8.5;8.5. Financial Considerations;543
14.8.6;8.6. Case Studies;544
14.9;REFERENCES;553
15;12 Chemical Feeding System;556
15.1;1. INTRODUCTION;556
15.2;2. CHEMICALS USED IN WATER;558
15.2.1;2.1. Aluminum Sulfate or Alum;559
15.2.2;2.2. Ammonia;559
15.2.3;2.3. Calcium Hydroxide;559
15.2.4;2.4. Carbon Dioxide;559
15.2.5;2.5. Ferric Chloride;560
15.2.6;2.6. Ferric Sulfate;560
15.2.7;2.7. Ferrous;560
15.2.8;2.8. Phosphate Compounds;560
15.2.9;2.9. Polymers;561
15.2.10;2.10. Potassium Permanganate;561
15.2.11;2.11. Sodium Carbonate;561
15.2.12;2.12. Sodium Chlorite;562
15.2.13;2.13. Sodium Hydroxide;562
15.2.14;2.14. Sodium Hypochlorite;563
15.2.15;2.15. Sulfuric Acid;563
15.3;3. CHEMICAL;563
15.3.1;3.1. Storage of Powder Chemicals;563
15.3.2;3.2. Storage of Liquid Chemicals;568
15.3.3;3.3. Storage of Gaseous Chemicals;568
15.3.4;3.4. Storage Facility Requirements;570
15.4;4. CHEMICAL;571
15.4.1;4.1. Preparation;571
15.4.2;4.2. Preparation;572
15.4.3;4.3. Preparation;573
15.5;5. CHEMICAL;573
15.5.1;5.1. Dry Feeders;574
15.5.2;5.2. Solution Feeders;579
15.5.3;5.3. Gas Feeders;580
15.6;6. DESIGN EXAMPLES;580
15.6.1;6.1. Example 1;580
15.6.2;6.2. Example 2;581
15.6.3;6.3. Example 3;581
15.6.4;6.4. Example 4;583
15.6.5;6.5. Example 5;583
15.6.6;6.6. Example 6;584
15.6.7;6.7. Example 7;585
15.7;REFERENCES;585
16;13 Wet Air Oxidation for Waste Treatment;587
16.1;1. INTRODUCTION;587
16.1.1;1.1. Process;588
16.1.2;1.2. Mechanisms and Kinetics;590
16.1.3;1.3. Design;592
16.1.4;1.4. Issues and Considerations of Using Wet;592
16.2;2. CATALYTIC;593
16.2.1;2.1. Process;593
16.2.2;2.2. Process;594
16.2.3;2.3. Design Considerations;598
16.3;3. EMERGING TECHNOLOGIES IN ADVANCED;599
16.3.1;3.1. Photocatalytic Oxidation (PCO) Process;599
16.3.2;3.2. Supercritical;604
16.4;4. APPLICATION;610
16.4.1;4.1. Case 1: WAO;610
16.4.2;4.2. Case 2: CWAO;613
16.4.3;4.3. Case 3: Photocatalytic Decolorization of Lanasol Blue CE Dye Solution;614
16.4.4;4.4. Case 4: Oxidation of Industrial Waste;616
16.5;REFERENCES;617
17;14 Lime Calcination;623
17.1;1. INTRODUCTION;623
17.2;2. THE CHEMICAL;624
17.2.1;2.1. Calcium Carbonate;624
17.2.2;2.2. Magnesium Carbonate;624
17.2.3;2.3. Dolomite and Magnesian/Dolomitic Limestone;625
17.3;3. KINETICS OF CALCINATION;625
17.3.1;3.1. Stages of Calcinations;625
17.3.2;3.2. Dissociation of High Calcium Limestone;626
17.3.3;3.3. Calorific Requirements;629
17.3.4;3.4. Dissociation of Magnesian/Dolomitic Limestones and Dolomite;630
17.3.5;3.5. Sintering of High Calcium Quicklime;630
17.3.6;3.6. Sintering of Calcined Dolomite;632
17.3.7;3.7. Steam Injection;633
17.3.8;3.8. Recarbonation;633
17.3.9;3.9. Calcination of Finely Divided Limestones;634
17.4;4. PROPERTIES;634
17.5;5. FACTORS;635
17.5.1;5.1. Effect;635
17.5.2;5.2. Effect;636
17.5.3;5.3. Effect;636
17.5.4;5.4. Influence of Stone Impurities;636
17.5.5;5.5. Effect;637
17.5.6;5.6. Effect;637
17.5.7;5.7. Effect;638
17.6;6. CALCINATION;639
17.7;7. CARBON DIOXIDE EMISSIONS FROM LIME CALCINATION;640
17.8;8. SOLAR LIME CALCINATION;640
17.8.1;8.1. Carbon Dioxide Mitigation Potential;643
17.9;9. CONCLUSIONS;643
17.10;NOMENCLATURE;643
17.11;REFERENCES;644
18;Appendix Conversion Factors for Environmental Engineers;646
19;Index;709
8 Fine Pore Aeration of Water and Wastewater (S. 391-392)
Nazih K. Shammas
CONTENTS
INTRODUCTION
DESCRIPTION
TYPES OF FINE PORE MEDIA
TYPES OF FINE PORE DIFFUSERS
DIFFUSER LAYOUT
CHARACTERISTICS OF FINE PORE MEDIA
PERFORMANCE IN CLEAN WATER
PERFORMANCE IN PROCESS WATER
NOMENCLATURE
REFERENCES
1. INTRODUCTION
The supply of oxygen for aeration is the single largest energy consumer at activated sludge wastewater treatment plants, representing 50–90% of total plant energy requirements (1,2). Replacement of less-efficient aeration systems with fine pore aeration devices can save up to 50% of aeration energy costs and has resulted in typical simple payback periods of 2–6 yr (3). As a result of these very impressive cost savings, a very large number, 1000–2000 municipal and industrial wastewater treatment facilities in the United States and Canada now use fine pore aeration.
Fine pore aeration technology remains relatively new in North America, and new materials and configurations continue to be developed. This chapter provides designers, end users, and regulators information on the nature of fine pore aeration devices and their performance to promote the intelligent application of fine pore aeration technology. Standardized testing of oxygen transfer devices in both clean and processed waters is a major advancement in the field. A consensus standard for testing aeration devices in clean water has been adopted by a large segment of the industry (4). Extensive testing of aeration equipment using this standard has led to the development of a large database on the performance of aeration devices in clean water. In addition, the development of improved (more precise and accurate) field test methods has permitted the generation of data that can be used to better characterize the translation of clean water test results to process conditions (5).
Experiments on wastewater aeration in England date back to as early as 1882 (6). In these experiments, air was introduced through open tubes or perforations in air delivery pipes. In the early years, patents were granted for a variety of diffusers, including perforated metal plates, porous tubes with fibrous materials, and nozzles (7). As activated sludge process investigations progressed, greater oxygen transfer efficiency (OTE) was sought with the production of smaller bubbles created by passing compressed air through porous media of various types. Experiments conducted in the United Kingdom seeking a better porous material consists of evaluations of limestone, firebrick, sand and glass mixtures, pumice, and other materials. The first porous plates were made available as early as 1915 in the United Kingdom. In the following years, several US companies offered porous plates that became the most popular method of aeration in this country in the 1930s and 1940s (3).
Shortly after the emergence of porous diffusers it became clear that media clogging could be a problem. Work in Chicago between 1922 and 1924 prompted the use of coarse media to avoid clogging (8). Clogging was attributed to liquid-side fouling and airside clogging because of dirt and oil in the air delivery system. Emphasis at that time was on improving air filtration (9–11). Substantial experimentation was performed to develop effective air filtration devices (10,11), and the results of that early work have led to the high-efficiency air filters used today in many porous diffused air systems (9). Mechanical aeration was one answer to the clogging problem. Since the introduction of Archimedean screw-type aerators in 1916, a multitude of mechanical aeration devices has been developed and used. Today, mechanical aeration devices serve as an important function in many applications for treatment of industrial and municipal wastewaters.




