Wang / Hung / Tay | Environmental Bioengineering | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band 11, 867 Seiten

Reihe: Handbook of Environmental Engineering

Wang / Hung / Tay Environmental Bioengineering

Volume 11
1. Auflage 2010
ISBN: 978-1-60327-031-1
Verlag: Humana Press
Format: PDF
Kopierschutz: 1 - PDF Watermark

Volume 11

E-Book, Englisch, Band 11, 867 Seiten

Reihe: Handbook of Environmental Engineering

ISBN: 978-1-60327-031-1
Verlag: Humana Press
Format: PDF
Kopierschutz: 1 - PDF Watermark



The past 30 years have seen the emergence of a growing desire worldwide that positive actions be taken to restore and protect the environment from the degrading effects of all forms of pollution - air, water, soil, and noise. Since pollution is a direct or indirect consequence of waste production, the seemingly idealistic demand for 'zero discharge' can be construed as an unrealistic demand for zero waste. However, as long as waste continues to exist, we can only attempt to abate the subsequent pollution by converting it to a less noxious form. Three major questions usually arise when a particular type of pollution has been identi ed: (1) How serious is the pollution? (2) Is the technology to abate it available? and (3) Do the costs of abatement justify the degree of abatement achieved? This book is one of the volumes of the Handbook of Environmental Engineering series. The principal intention of this series is to help readers formulate answers to the above three questions. The traditional approach of applying tried-and-true solutions to speci c pollution problems has been a major contributing factor to the success of environmental engineering, and has accounted in large measure for the establishment of a 'methodology of pollution control. ' However, the realization of the ever-increasing complexity and interrelated nature of current environmental problems renders it imperative that intelligent planning of pollution abatement systems be undertaken.

Wang / Hung / Tay Environmental Bioengineering jetzt bestellen!

Weitere Infos & Material


1;Environmental Bioengineering;3
1.1;Dedications;5
1.2;Preface;7
1.3;Contents;11
1.4;Contributors;25
1.5;1 Treatment and Disposal of Biosolids;29
1.5.1;1 Wastewater Treatment and Biosolids Formation;29
1.5.2;2 Characteristics of Biosolids;32
1.5.2.1;2.1 Total Solids Content;32
1.5.2.2;2.2 Volatile Solids Content;32
1.5.2.3;2.3 pH;33
1.5.2.4;2.4 Organic Matter;33
1.5.2.5;2.5 Nutrients;33
1.5.2.5.1;2.5.1 Nitrogen;34
1.5.2.5.2;2.5.2 Phosphorus;34
1.5.2.5.3;2.5.3 Other Plant Nutrients;34
1.5.2.5.4;2.5.4 Metals;35
1.5.2.5.5;2.5.5 Toxic Organic Chemicals;35
1.5.2.5.6;2.5.6 Pathogens;35
1.5.3;3 Regulations Governing Agricultural Use of Biosolids;38
1.5.3.1;3.1 Standards for Pathogens;38
1.5.3.1.1;3.1.1 Class A Pathogen Requirements;39
1.5.3.1.2;3.1.2 Class B Pathogen Requirements;42
1.5.3.2;3.2 Pollutant Limits;44
1.5.3.2.1;3.2.1 U.S. Chemical Pollutant Standards for Agricultural Use of Biosolids;44
1.5.3.2.2;3.2.2 Biosolids Quality and Part 503 Requirements;47
1.5.3.2.3;3.2.3 Chemical Pollutant Standards for Agricultural Use of Biosolids in Russia and European Countries;50
1.5.4;4 Sludge Treatment Processes;51
1.5.4.1;4.1 Volume Reduction Processes;52
1.5.4.1.1;4.1.1 Thickening;52
1.5.4.1.2;4.1.2 Dewatering;52
1.5.4.1.3;4.1.3 Conditioning;53
1.5.4.1.4;4.1.4 Drying;53
1.5.4.2;4.2 Stabilization Processes;53
1.5.4.2.1;4.2.1 Aerobic Digestion;53
1.5.4.2.2;4.2.2 Anaerobic Digestion;55
1.5.4.2.3;4.2.3 Composting;57
1.5.4.3;4.3 Other Sludge Treatment Processes;63
1.5.5;5 Biosolids Use and Disposal;63
1.5.5.1;5.1 Land Application;64
1.5.5.1.1;5.1.1 Application to Agricultural Lands;65
1.5.5.1.2;5.1.2 Application to Forest Lands;67
1.5.5.1.3;5.1.3 Land Reclamation;68
1.5.5.1.4;5.1.4 Other Options of Sewage Sludge Land Application;71
1.5.5.2;5.2 Landfilling and Incineration;72
1.5.5.2.1;5.2.1 Landfilling;72
1.5.5.2.2;5.2.2 Incineration;74
1.6;2 Ultrasound Pretreatment of Sludge for Anaerobic Digestion;80
1.6.1;1 Introduction;80
1.6.2;2 Pretreatment of Sludge for Anaerobic Digestion;82
1.6.2.1;2.1 Anaerobic Digestion;82
1.6.2.2;2.2 Methods of Pretreatment;83
1.6.2.2.1;2.2.1 Thermal Treatment;83
1.6.2.2.2;2.2.2 Chemical Treatment;83
1.6.2.2.3;2.2.3 Mechanical Treatment;84
1.6.2.2.4;2.2.4 Enzyme Treatment;85
1.6.2.2.5;2.2.5 Irradiation Treatment;85
1.6.3;3 Fundamental of Ultrasound;85
1.6.3.1;3.1 Introduction;85
1.6.3.2;3.2 Acoustic Cavitation;86
1.6.3.2.1;3.2.1 Generation of Cavitation;86
1.6.3.2.2;3.2.2 Two Types of Cavitation;86
1.6.3.2.3;3.2.3 Acoustic Cavitation Conditions;86
1.6.3.2.4;3.2.4 Effects of Acoustic Cavitation;87
1.6.3.3;3.3 Bubble Dynamics;87
1.6.3.3.1;3.3.1 Formation of Bubbles;87
1.6.3.3.2;3.3.2 Jet Formation;88
1.6.3.3.3;3.3.3 Sonoluminescence;88
1.6.4;4 Effects of Ultrasound;88
1.6.4.1;4.1 Chemical Effects;88
1.6.4.2;4.2 Biological Effects;88
1.6.4.2.1;4.2.1 Mechanisms of Biological Damage;88
1.6.4.2.2;4.2.2 Bioeffects of Ultrasound;89
1.6.5;5 Industrial Ultrasound Applications;89
1.6.5.1;5.1 Process Parameters;89
1.6.5.2;5.2 Industrial Applications;90
1.6.5.2.1;5.2.1 Applications in Liquids;90
1.6.5.2.2;5.2.2 Applications in Solids;90
1.6.6;6 Ultrasonication for Environmental Engineering Applications;90
1.6.6.1;6.1 Ultrasonication on Wastewater Treatment;91
1.6.6.1.1;6.1.1 Reactions of Ultrasound on Wastewater Treatment;91
1.6.6.1.2;6.1.2 Types of Pollutants Treated by Ultrasound;91
1.6.6.2;6.2 Ultrasonication on Anaerobic Digestion;93
1.6.6.2.1;6.2.1 Reactions of Ultrasound Pretreatment;94
1.6.6.2.2;6.2.2 Influencing Parameters;95
1.6.6.2.3;6.2.3 Ultrasonic Sludge Disintegration;97
1.6.6.2.4;6.2.4 Methods to Enhance Ultrasound Efficiency;97
1.7;3 Solubilization of Sewage Sludge to Improve Anaerobic Digestion;101
1.7.1;1 Introduction;101
1.7.2;2 Optimum Operating Conditions of Experimental Apparatus;104
1.7.2.1;2.1 Experimental Apparatus and Methods;104
1.7.2.1.1;2.1.1 Experimental Apparatus;104
1.7.2.1.2;2.1.2 Experimental Method;104
1.7.2.2;2.2 Optimum Operating Conditions of Experimental Apparatus;106
1.7.2.2.1;2.2.1 Changes of Medium Radius with Disk Process;106
1.7.2.2.2;2.2.2 Effects of Preheating Process on Solubilization;107
1.7.2.2.3;2.2.3 Effects of Rotary Speed of Disk on Solubilization;108
1.7.2.2.4;2.2.4 Changes of Solubilization Rate with Treatment Process;108
1.7.2.2.5;2.2.5 Effect of Disk Gap on Solubilization;109
1.7.2.2.6;2.2.6 Effects of Sludge Concentrations on Solubilization;110
1.7.2.2.7;2.2.7 Comparison of Treatment Cost;111
1.7.2.3;2.3 Results and Discussion;111
1.7.3;3 Biodegradation of the Sludge Treated by Solubilization Process;112
1.7.3.1;3.1 Anaerobic Biodegradation;112
1.7.3.1.1;3.1.1 Vial Test on Anaerobic Biodegradation;113
1.7.3.1.2;3.1.2 Continuous Experiment on Anaerobic Biodegradation;117
1.7.3.2;3.2 Aerobic Biodegradation;125
1.7.3.2.1;3.2.1 Aerobic Biodegradation by BOD Experiment;125
1.7.3.2.2;3.2.2 Continuous Experiment on Aerobic Biodegradation;127
1.7.3.3;3.3 Batch Test on Anaerobic Biodegradation of Digested Sludge Treated After Solubilization;133
1.7.3.3.1;3.3.1 Objective;133
1.7.3.3.2;3.3.2 Methods and Experimental Conditions;135
1.7.3.3.3;3.3.3 Results and Discussion;135
1.7.3.3.4;3.3.4 Conclusions;137
1.7.4;4 Comparison With Other Methods of Sludge Solubilization;138
1.7.4.1;4.1 Comparison of Ultrasonic Method and High-Speed Rotary Disk Process Method;138
1.7.4.1.1;4.1.1 Objective;138
1.7.4.1.2;4.1.2 Comparison Methods and Conditions;138
1.7.4.1.3;4.1.3 Calculation Method;138
1.7.4.1.4;4.1.4 Observations;139
1.7.4.2;4.2 Comparison of Pressure Exploded Process and High-Speed Rotary Disk Process;140
1.7.4.2.1;4.2.1 Objective;140
1.7.4.2.2;4.2.2 Comparison Method and Condition;140
1.7.4.2.3;4.2.3 Calculation Method;140
1.7.4.2.4;4.2.4 Observations;142
1.7.4.2.5;4.2.5 Conclusion;144
1.8;4 Applications of Composted Solid Wastes for Farmland Amendment and Nutrient Balance in Soils;149
1.8.1;1 Introduction;149
1.8.2;2 Chemical Elements in Composted Solids and Composts-Amended Soil;154
1.8.2.1;2.1 Sampling, Pretreatment, and Analysis of Composts and Soil;154
1.8.2.2;2.2 Macronutrient Elements (P, K, Ca, Mg) in Composted Solid Wastes and Compost-amended Soil;156
1.8.2.2.1;2.2.1 P, K, Ca, and Mg in Composts;156
1.8.2.2.2;2.2.2 P, K, Ca, and Mg in Composts-Amended Soil;157
1.8.2.3;2.3 Micronutrient Elements (Fe, Mn, Cu, Zn) in Composted Solid Wastes and Composts-amended Soil;159
1.8.2.3.1;2.3.1 Fe, Mn, Cu, and Zn in Composts;159
1.8.2.3.2;2.3.2 Fe, Mn, Cu, and Zn in Composts-Amended Soils;162
1.8.2.4;2.4 Heavy Metals (Cd, Cr, Ni, Co, Pb) in Composted Solid Wastes and Composts-Amended Soil;168
1.8.2.4.1;2.4.1 Cd, Cr, Ni, Co, and Pb in Composted Solid Wastes;168
1.8.2.4.2;2.4.2 Cd, Cr, Ni, Co, and Pb in Composts-Amended Soils;169
1.8.2.5;2.5 Organic Matter and Moisture Content in Composts and Unpolluted Soil;173
1.8.3;3 Farmland Applications of Composted Solid Wastes for Nutrient Balance;174
1.8.3.1;3.1 Principle of Nutrient Balance in Soil;174
1.8.3.2;3.2 Evaluation of the Compost Application in Farmland;175
1.8.3.2.1;3.2.1 Input–Output of Mineral Elements in Compost-Amended Farmland;176
1.8.3.2.2;3.2.2 Field Experimental Observation;180
1.8.4;4 Summary;184
1.9;6 Kitchen Refuse Fermentation;217
1.9.1;1 Introduction;217
1.9.1.1;1.1 Availability and Potential of Kitchen Refuse Biomass;218
1.9.2;2 Fermentation of Kitchen Refuse;219
1.9.2.1;2.1 Natural Fermentation Process;219
1.9.2.2;2.2 Controlled Fermentation;221
1.9.3;3 Production of Methane;221
1.9.4;4 Production of Organic Acids;223
1.9.5;5 Production of l-Lactic Acid;224
1.9.6;6 Potential Applications of Kitchen Refuse Fermentation Products;226
1.9.6.1;6.1 Production of Poly-3-Hydroxyalkanoates Using Organic Acids;226
1.9.6.2;6.2 Production of Poly-Lactate Using Organic Acids;228
1.9.6.3;6.3 Environmental Mitigation of Greenhouse Gases Effect;230
1.9.7;7 Integrated Zero Discharge Concepts of Municipal Solid Waste Management and Handling;230
1.10;5 Biotreatment of Sludge and Reuse;190
1.10.1;1 Introduction;190
1.10.2;2 Sewage Sludge;192
1.10.2.1;2.1 Sewage Sludge Generation;192
1.10.2.2;2.2 Health Impacts of Sludge Utilization;192
1.10.2.3;2.3 Regulatory Issues on Sludge Disposal;193
1.10.2.4;2.4 A Sustainable Approach for Sludge Disposal;195
1.10.3;3 Composting of Sludge;196
1.10.3.1;3.1 Historical Background of Composting;196
1.10.3.2;3.2 Composting Process;197
1.10.4;4 Types of Composting Systems;198
1.10.5;5 Factors Affecting Composting Process;199
1.10.5.1;5.1 Temperature;199
1.10.5.2;5.2 Time;200
1.10.5.3;5.3 pH;200
1.10.5.4;5.4 C/N ratio;200
1.10.5.5;5.5 Moisture Content;201
1.10.5.6;5.6 Aeration;201
1.10.5.7;5.7 Mixing;202
1.10.5.8;5.8 Size;202
1.10.5.9;5.9 Microorganism;202
1.10.5.10;5.10 Use of Inocula;202
1.10.5.11;5.11 Seeding and Reseeding;202
1.10.6;6 Solid State Bioconversion Technique;203
1.10.7;7 Microbial Basis of SSB Processes;203
1.10.7.1;7.1 Microbial Type;203
1.10.7.2;7.2 Bacteria;204
1.10.7.3;7.3 Yeasts;204
1.10.7.4;7.4 Filamentous Fungi;204
1.10.8;8 Case Studies;204
1.10.8.1;8.1 Case 1: Utilization of Sewage Sludge as Fertilizer and as Potting Media;204
1.10.8.2;8.2 Case 2: Reduction of Heavy Metals in Sewage Sludge During Composting;206
1.10.8.3;8.3 Case 3: Solid State Bioconversion of Oil Palm Empty Fruit Brunches (EFB) into Compost by Selected Microbes;206
1.10.8.4;8.4 Case 4: Composting of Selected Organic Sludges Using Rotary Drum;208
1.10.8.5;8.5 Case 5: Bioreactor Co-composting of Sewage Sludge and Restaurant Waste;211
1.11;7 Heavy Metal Removal by Crops from Land Application of Sludge;235
1.11.1;1 Introduction;235
1.11.1.1;1.1 Definition of Phytoremediation;236
1.11.1.2;1.2 Heavy Metals in Soil;237
1.11.1.2.1;1.2.1 Natural Content of Heavy Metals in Soil;238
1.11.1.3;1.3 Heavy Metals from Sludge;239
1.11.1.4;1.4 Land Application of Sludge;239
1.11.1.4.1;1.4.1 Sewage Sludge Generation;239
1.11.1.4.2;1.4.2 Land Application of Sludge in Malaysia;240
1.11.1.4.3;1.4.3 Characteristic of Sludge;241
1.11.1.4.4;1.4.4 Some Statistics on Sludge;243
1.11.2;2 Principles of Phytoremediation;244
1.11.2.1;2.1 Types of Crops and the Uptake Relationship of Heavy Metal;244
1.11.2.1.1;2.1.1 Phytoaccumulation;244
1.11.2.1.2;2.1.2 Phytodegradation;245
1.11.2.1.3;2.1.3 Phytostabilization;245
1.11.2.1.4;2.1.4 Phytovolatilization;245
1.11.2.1.5;2.1.5 Rhizodegradation;245
1.11.2.1.6;2.1.6 Rhizofiltration;246
1.11.2.1.7;2.1.7 Impact of Heavy Metals on Plants;246
1.11.2.2;2.2 Design Parameters;247
1.11.2.2.1;2.2.1 Monitoring Plan;248
1.11.2.2.2;2.2.2 Limitations;248
1.11.2.3;2.3 Empirical Equations;249
1.11.2.4;2.4 Health Effects;249
1.11.3;3 Standards and Regulations;250
1.11.3.1;3.1 Sludge Application on Land;250
1.11.3.2;3.2 Standards and Regulations of Sludge Applications in Malaysia, the USA, and Europe;251
1.11.4;4 Case Studies and Research Findings;252
1.11.5;5 Design Example;254
1.11.6;6 Future Direction Research;254
1.12;8 Phytoremediation of Heavy Metal Contaminated Soils and Water Using Vetiver Grass;257
1.12.1;1 Global Soil Contamination;257
1.12.2;2 Remediation Techniques;258
1.12.2.1;2.1 Physical and Chemical Techniques;258
1.12.2.2;2.2 Bioremediation Techniques;258
1.12.2.3;2.3 Phytoremediation;258
1.12.2.3.1;2.3.1 Phytoextraction;259
1.12.2.3.2;2.3.2 Phytofiltration;259
1.12.2.3.3;2.3.3 Phytostabilization;259
1.12.2.3.4;2.3.4 Phytovolatilization;259
1.12.2.3.5;2.3.5 Phytomining;259
1.12.2.3.6;2.3.6 Limitations of Phytoremediation;259
1.12.2.3.7;2.3.7 Plants for Phytoremediation;260
1.12.3;3 Vetiver Grass as an Ideal Plant for Phytoremediation;260
1.12.3.1;3.1 Unique Morphology and Physiology;261
1.12.3.2;3.2 Tolerance to Adverse Soil Conditions;261
1.12.3.3;3.3 Tolerance to High Acidity and Manganese Toxicity;261
1.12.3.4;3.4 Tolerance to High Acidity and Aluminum Toxicity;262
1.12.3.5;3.5 Tolerance to High Soil Salinity;262
1.12.3.6;3.6 Tolerance to Strongly Alkaline and Strongly Sodic Soil Conditions;264
1.12.3.7;3.7 Tolerance to Heavy Metals;264
1.12.3.7.1;3.7.1 Tolerance Levels and Shoot Contents of Heavy Metals;264
1.12.3.7.2;3.7.2 Distribution of Heavy Metals in the Vetiver Plant;264
1.12.3.8;3.8 Tolerance to Extreme Nutrient Levels;266
1.12.3.9;3.9 Tolerance to Agrochemicals;266
1.12.3.10;3.10 Breaking Up of Agrochemicals;267
1.12.3.11;3.11 Growth;267
1.12.3.11.1;3.11.1 Root System;268
1.12.3.11.2;3.11.2 Shoots;268
1.12.3.12;3.12 Weed Potential;268
1.12.4;4 Phytoremediation Using Vetiver;268
1.12.5;5 Case Studies;269
1.12.5.1;5.1 Australia;269
1.12.5.1.1;5.1.1 Gold Mine;269
1.12.5.1.2;5.1.2 Coal Mine;279
1.12.5.1.3;5.1.3 Bentonite Mine;279
1.12.5.1.4;5.1.4 Bauxite Residue or Alumina Redmud;284
1.12.5.1.5;5.1.5 Landfill Rehabilitation and Leachate Treatment;285
1.12.5.1.6;5.1.6 Domestic Wastewater Treatment;286
1.12.5.1.7;5.1.7 Industrial Wastewater Treatment;289
1.12.5.2;5.2 China;290
1.12.5.3;5.3 South Africa;291
1.12.6;6 Recent Research in Heavy Metal Phytoremediation Using Vetiver;291
1.12.6.1;6.1 Growth;292
1.12.6.2;6.2 Results;293
1.12.7;7 Future Large Scale Applications;294
1.12.7.1;7.1 Phyto-extraction;295
1.12.7.2;7.2 Phyto-stabilization and Mine Site Rehabilitation (55–57);295
1.12.7.3;7.3 Landfill Rehabilitation and Leachate Treatment (58,60);295
1.12.7.4;7.4 Wastewater Treatment (59);295
1.12.7.5;7.5 Other Land Rehabilitation;295
1.12.8;8 Benefits of Phytoremediation with Vetiver Grass;295
1.12.9;9 Conclusion;296
1.13;9 Bioremediation;300
1.13.1;1 Introduction;300
1.13.1.1;1.1 Environmental Pollution: An Overview;300
1.13.1.2;1.2 Environmental Remediation Strategies;301
1.13.1.3;1.3 Bioremediation: A Concept;301
1.13.1.4;1.4 Advantages of Bioremediation;302
1.13.2;2 Environmental Contaminants;303
1.13.2.1;2.1 Environmental Contaminants;303
1.13.2.2;2.2 Chlorinated Contaminants;303
1.13.2.2.1;2.2.1 Microbial Degradation of Chlorinated Pollutants;308
1.13.2.3;2.3 Polycyclic Hydrocarbons and Petroleum Contaminants;310
1.13.2.3.1;2.3.1 Microbial Degradation of Polycyclic Aromatic and Petroleum Hydrocarbons;311
1.13.2.4;2.4 BTEX and Pesticides Contaminants;312
1.13.2.4.1;2.4.1 Microbial Degradation of BTEX and Pesticides;313
1.13.2.5;2.5 Heavy Metal Contaminants;314
1.13.2.5.1;2.5.1 Remediation of Metal Contaminants;315
1.13.2.5.2;2.5.2 Microbial Removal of Heavy Metal Contaminants;315
1.13.3;3 Bioremediation Strategies;321
1.13.3.1;3.1 Landfarming;321
1.13.3.2;3.2 Composting;321
1.13.3.3;3.3 In Situ Intrinsic Bioremediation;323
1.13.3.4;3.4 Ex Situ or Slurry Bioremediation;324
1.13.3.5;3.5 Bioaugmentation;324
1.13.4;4 Application of Bioremediation;325
1.13.4.1;4.1 Case Studies of Bioremediation;325
1.13.4.1.1;4.1.1 Fruit and Vegetable Processing Industry;325
1.13.4.1.2;4.1.2 Olive Oil Industry;325
1.13.4.1.3;4.1.3 Fermentation Industry;326
1.13.4.1.4;4.1.4 Dairy Industry;326
1.13.4.1.5;4.1.5 Meat, Poultry and Fish Industries;326
1.13.4.1.6;4.1.6 Oil Refinery Sludge;327
1.13.4.1.7;4.1.7 Coke Plant Wastewater;327
1.13.4.1.8;4.1.8 Marine Bioremediation;327
1.13.4.2;4.2 Factors for Designing a Bioremediation Process;329
1.13.4.2.1;4.2.1 Biodegradative Performance;329
1.13.4.2.2;4.2.2 Anaerobic–Aerobic Processes;329
1.13.4.2.3;4.2.3 Catalyst Performance;330
1.13.4.2.4;4.2.4 In-Complete and Complete Metabolic Pathways;330
1.13.4.2.5;4.2.5 Pollutant Bio-availability;331
1.13.4.2.6;4.2.6 Catalyst Survival in the Environment;331
1.13.4.3;4.3 Bioremediation Process Design and Implementation;331
1.13.5;5 Limitation of Bioremediation Strategy;331
1.13.6;6 Future Prospects;332
1.14;10 Wetlands for Wastewater Treatment;340
1.14.1;1 Introduction;340
1.14.2;2 What are Wetlands?;341
1.14.2.1;2.1 Wetland Functions and Values;342
1.14.3;3 Natural Wetlands;342
1.14.4;4 Constructed Wetlands;343
1.14.4.1;4.1 Components of Constructed Wetlands;344
1.14.4.2;4.2 Advantages of Constructed Wetlands for Wastewater Treatment;344
1.14.4.3;4.3 Types of Constructed Wetlands;345
1.14.4.3.1;4.3.1 Surface Flow System;346
1.14.4.3.2;4.3.2 Subsurface Flow System;346
1.14.5;5 Mechanisms of Treatment Processes for Constructed Wetlands;347
1.14.5.1;5.1 Biodegradable Organic Matter Removal Mechanism;347
1.14.5.2;5.2 Suspended Solids Removal Mechanism;348
1.14.5.3;5.3 Nitrogen Removal Mechanism;349
1.14.5.4;5.4 Heavy Metals Removal Mechanism;349
1.14.5.5;5.5 Pathogenic Bacteria and Viruses Removal Mechanism;350
1.14.5.6;5.6 Other Pollutants Removal Mechanism;350
1.14.6;6 Selection of Wetland Plant;350
1.14.6.1;6.1 Function of Wetland Plants;350
1.14.6.2;6.2 Roles of Wetland Plants;351
1.14.6.3;6.3 Types of Wetland Plants;352
1.14.6.4;6.4 Selection of Wetland Plants;352
1.14.7;7 Design of Constructed Wetland Systems;357
1.14.7.1;7.1 Design Principles;357
1.14.7.2;7.2 Hydraulics;357
1.14.7.3;7.3 General Design Procedures (13);359
1.14.7.3.1;7.3.1 Surface Flow Wetland;359
1.14.7.3.2;7.3.2 Subsurface Flow Wetland;360
1.14.8;8 Wetland Monitoring and Maintenance;363
1.14.8.1;8.1 Water Quality Monitoring;364
1.14.9;9 Case Study;365
1.14.9.1;9.1 Putrajaya Wetlands, Malaysia;365
1.14.9.2;9.2 Acle, Norfolk, United Kingdom (17);366
1.14.9.3;9.3 Arcata, California (10);367
1.15;11 Modeling of Biosorption Processes;374
1.15.1;1 Introduction;374
1.15.2;2 Batch Operation;376
1.15.2.1;2.1 Batch Process Models;376
1.15.2.2;2.2 Equilibrium Isotherms;376
1.15.2.3;2.3 Rate Models;379
1.15.2.4;2.4 Pore Diffusion Model;379
1.15.2.5;2.5 Homogeneous Surface Diffusion Model;381
1.15.2.6;2.6 Second-Order Reversible Reaction Model;383
1.15.3;3 Column Operation;384
1.15.3.1;3.1 Fixed Bed Process Models;384
1.15.3.2;3.2 Rate Models;385
1.15.3.3;3.3 Pore Diffusion Model;385
1.15.3.4;3.4 Homogeneous Surface Diffusion Model;386
1.15.3.5;3.5 Second-Order Reversible Reaction Model;388
1.15.3.6;3.6 Quasichemical Kinetic Model;389
1.15.4;4 Examples;390
1.16;12 Heavy Metal Removal by Microbial Biosorbents;398
1.16.1;1 Introduction;398
1.16.2;2 Conventional Technologies for Heavy Metal Removal;400
1.16.2.1;2.1 Chemical Precipitation;400
1.16.2.2;2.2 Ion Exchange;400
1.16.2.3;2.3 Membrane Technology;401
1.16.2.4;2.4 Flocculation and Coagulation;401
1.16.2.5;2.5 Flotation;401
1.16.2.6;2.6 Electrodialysis;401
1.16.3;3 Heavy Metal Removal by Microbial Biosorbents;403
1.16.3.1;3.1 Biosorption;403
1.16.3.2;3.2 Microbial Biosorbents;404
1.16.3.3;3.3 Environmental Factors for Biosorption;405
1.16.3.4;3.4 Biosorption Mechanisms;407
1.16.3.5;3.5 Biosorption Sites;409
1.16.4;4 Biosorption Isotherms;411
1.16.4.1;4.1 The Langmuir Isotherm;411
1.16.4.2;4.2 The Freundlich Isotherm;412
1.16.4.3;4.3 The Redlich–Peterson Isotherm;413
1.16.5;5 Biosorption Kinetics;413
1.16.5.1;5.1 Pseudo-First-Order Kinetic Model;415
1.16.5.2;5.2 Pseudo-Second-Order Kinetic Model;415
1.16.5.3;5.3 Elovich Kinetic Model;416
1.16.6;6 Examples;418
1.17;13 Simultaneous Removal of Carbon and Nitrogen from Domestic Wastewater in an Aerobic RBC;426
1.17.1;1 Introduction;426
1.17.1.1;1.1 Characteristics of Domestic Wastewaters;427
1.17.1.2;1.2 Adverse Effects of Nitrogenous Discharges;428
1.17.1.3;1.3 Nitrogen Forms and Transformation in Wastewater Treatment;428
1.17.2;2 Carbon and Nitrogen Removal from Domestic Wastewaters;429
1.17.2.1;2.1 Biochemical Reactions;430
1.17.3;3 Bio-Reactors Employed for Carbon and Nitrogen Removal;431
1.17.3.1;3.1 Trickling Filters;432
1.17.3.2;3.2 Rotating Biological Contactor;432
1.17.3.3;3.3 Conventional Activated Sludge Processes at Low Loadings;433
1.17.3.4;3.4 Two-Stage Activated Sludge Systems with Separate Carbonaceous Oxidation and Nitrification Systems;433
1.17.4;4 Processes Employed for Simultaneous Carbon and Nitrogen Removal;433
1.17.4.1;4.1 Separated Stage Process;434
1.17.4.2;4.2 Single Stage Process;434
1.17.5;5 Development of RBCs;435
1.17.5.1;5.1 Application of Rotating Biological Contactors for Domestic Wastewater Treatment;436
1.17.5.1.1;5.1.1 Components of Rotating Biological Contactor;437
1.17.5.1.2;5.1.2 Mechanism of Substrate Removal in RBC;438
1.17.5.1.3;5.1.3 Development of Microbial Communities in Aerobic RBC;439
1.17.5.2;5.2 Importance of Aerobic RBC;439
1.17.5.2.1;5.2.1 Nitrification in RBCs;439
1.17.5.2.2;5.2.2 Denitrification in RBC;441
1.17.5.2.3;5.2.3 Combined Nitrification–Denitrification in RBC;442
1.17.5.2.4;5.2.4 Single Stage Carbon Removal, Nitrification, and Denitrification in an Aerobic RBC System;443
1.17.5.3;5.3 Advantages of Aerobic RBC;444
1.17.5.4;5.4 Demerits of RBC;445
1.17.5.5;5.5 Major Design Criteria for New Generation RBCs;446
1.17.5.6;5.6 Recent Developments;446
1.17.6;6 Summary and Conclusions;450
1.17.7;7 Design Examples;451
1.18;14 Anaerobic Treatment of Low-Strength Wastewater by a Biofilm Reactor;467
1.18.1;1 Anaerobic Process;467
1.18.1.1;1.1 Anaerobic Metabolism;467
1.18.1.2;1.2 Anaerobic Process Dependence;469
1.18.1.3;1.3 Direct Anaerobic Treatment of Wastewater;470
1.18.2;2 Anaerobic Treatment Systems;473
1.18.2.1;2.1 Historical Development;473
1.18.2.2;2.2 Anaerobic Reactors;474
1.18.3;3 Anaerobic Biofilm Reactors;477
1.18.3.1;3.1 Reactor Configuration and Hydraulic Characteristics;477
1.18.3.2;3.2 Packing Media;478
1.18.3.3;3.3 Biomass Development and Time of Operation;480
1.18.4;4 Low-Strength Wastewater Treatment;481
1.18.4.1;4.1 Anaerobic Filters;481
1.18.4.1.1;4.1.1 Startup;481
1.18.4.1.2;4.1.2 Performance;487
1.18.4.1.3;4.1.3 Biogas Production;488
1.18.4.1.4;4.1.4 Packing Material;489
1.18.4.1.5;4.1.5 Biomass Accumulation and Disposal;490
1.18.4.2;4.2 Modified Systems;491
1.18.4.3;4.3 Process Modeling;492
1.18.4.4;4.4 Seasonal Operation;494
1.18.4.5;4.5 Reactor Design Recommendations;495
1.18.4.6;4.6 Posttreatment;496
1.18.5;5 Design Examples;501
1.19;15 Biological Phosphorus Removal Processes;519
1.19.1;1 Introduction;519
1.19.2;2 Biochemical Models for Enhanced Biological Phosphorus Removal;520
1.19.2.1;2.1 The Comeau/Wentzel Model;521
1.19.2.1.1;2.1.1 Under Anaerobic Conditions;521
1.19.2.1.2;2.1.2 Under Aerobic Conditions;522
1.19.2.2;2.2 The Mino Model;522
1.19.2.2.1;2.2.1 Under Anaerobic Conditions;523
1.19.2.2.2;2.2.2 Under Aerobic Conditions;524
1.19.2.3;2.3 The Adapted Mino Model;524
1.19.2.3.1;2.3.1 Under Anaerobic Conditions;524
1.19.2.3.2;2.3.2 Under Aerobic Conditions;525
1.19.3;3 Microbiology of the EBPR Processes;525
1.19.3.1;3.1 Phosphorus Accumulating Organisms;525
1.19.3.2;3.2 Non-polyphosphate Glycogen Accumulating Organisms;527
1.19.4;4 Biological Phosphorus Removal Processes;527
1.19.4.1;4.1 Process Description;528
1.19.4.1.1;4.1.1 PhoStrip Process;528
1.19.4.1.2;4.1.2 The Bardenpho Process;528
1.19.4.1.3;4.1.3 Anaerobic/Oxic Process;529
1.19.4.1.4;4.1.4 The UCT Process;529
1.19.4.1.5;4.1.5 The Modified Activated Sludge Process;530
1.19.4.1.6;4.1.6 Combined Process for Biological Phosphorus Removal;530
1.19.4.1.7;4.1.7 SBR Process;530
1.19.4.1.8;4.1.8 Granular Sludge Process;530
1.19.4.2;4.2 Process Applications and Limitations;531
1.19.5;5 Factors Affecting EBPR;532
1.19.5.1;5.1 Type of Substrate;532
1.19.5.2;5.2 Organic Loading;533
1.19.5.3;5.3 Magnesium and Potassium;533
1.19.5.4;5.4 Nitrate Content in the Influent;533
1.19.5.5;5.5 Phosphorus Loading;534
1.19.5.6;5.6 Temperature;534
1.19.5.7;5.7 pH;534
1.19.5.8;5.8 Dissolved Oxygen;535
1.19.5.9;5.9 Lengths of Anaerobic and Aerobic Phases;535
1.19.5.10;5.10 Solid Retention Time;536
1.20;16 Total Treatment of Black and Grey Water for Rural Communities;544
1.20.1;1 Introduction;544
1.20.2;2 Domestic Wastewater Characteristics;547
1.20.2.1;2.1 Physical Parameters;548
1.20.2.2;2.2 Chemical Parameters;549
1.20.2.3;2.3 Microorganisms;553
1.20.3;3 Guidelines for Water Treatment and Testing;553
1.20.4;4 Traditional Wastewater Treatment;554
1.20.4.1;4.1 Wastewater Treatment and Reuse;557
1.20.5;5 Ecologically Sustainable Wastewater Management System: A Case Study;561
1.20.5.1;5.1 Background;561
1.20.5.2;5.2 Design Parameters and Considerations;561
1.20.5.3;5.3 Sampling and Testing;565
1.20.5.4;5.4 Treatment Performance;565
1.20.5.5;5.5 Conclusions;569
1.21;17 Anaerobic Treatment of Milk Processing Wastewater;576
1.21.1;1 Introduction;576
1.21.1.1;1.1 The Milk Processing Industry;577
1.21.1.2;1.2 Major Environmental Problems Caused by Milk Processing Effluents;577
1.21.1.2.1;1.2.1 Direct Discharge into a Water Body;578
1.21.1.2.2;1.2.2 Direct Discharge onto Land;578
1.21.1.2.3;1.2.3 Treatment in Lagoons;578
1.21.2;2 The Effluents from Milk Processing Industries;579
1.21.2.1;2.1 Origins of Liquid Pollution in the Milk Processing Industry;579
1.21.2.2;2.2 Characterization of Effluents from Milk Processing Industry;581
1.21.2.3;2.3 The Specific Problems of Cheese Whey;584
1.21.2.4;2.4 Good Management Practices and Benchmarking;588
1.21.3;3 The Anaerobic Treatment Process;589
1.21.3.1;3.1 Description of Anaerobic Process;590
1.21.4;4 The Anaerobic Treatment of Milk Processing Effluents;597
1.21.4.1;4.1 Benefits of Anaerobic Process for Milk Processing Effluents;597
1.21.4.2;4.2 The Role of Anaerobic Systems in a Treatment Plant for Milk Processing Effluents;598
1.21.4.3;4.3 Anaerobic Digestion of Effluent Components;601
1.21.4.3.1;4.3.1 Sugars;601
1.21.4.3.2;4.3.2 Proteins;602
1.21.4.3.3;4.3.3 Fats;603
1.21.4.4;4.4 Special Considerations for Anaerobic Treatment of Milk Processing Effluents;606
1.21.4.5;4.5 Application of Anaerobic Technology to Milk Processing Effluents;609
1.21.4.5.1;4.5.1 Types of Anaerobic Systems Used for Milk Processing Effluents;609
1.21.4.5.2;4.5.2 Design Considerations for Anaerobic Systems in Milk Processing Industry;617
1.21.4.5.3;4.5.3 Loads and Operating Parameters in Anaerobic Systems for Milk Processing Effluents;618
1.21.4.5.4;4.5.4 Summary of Results for Anaerobic Treatment of Milk Processing Effluents;618
1.21.4.5.5;4.5.5 Choice of Anaerobic System for Treatment of Milk Processing Wastewater;618
1.21.4.5.6;4.5.6 Control of Anaerobic Processes Applied to Milk Processing Effluents;622
1.21.5;5 Case Studies;624
1.21.5.1;5.1 Case Study 1: Organic Shock Load (Whey Discharge);625
1.21.5.2;5.2 Case Study 2: Toxic Discharge (Concentrated Aniline);626
1.21.5.3;5.3 Case Study 3: Chemical Discharge (Soda Lime);627
1.21.5.4;5.4 Case Study 4: Change in Cleaning Products;628
1.21.6;6 Design Examples and Questions;629
1.21.6.1;6.1 Design Example 1: Anaerobic Contact Reactor (Cheese Mill);629
1.21.6.2;6.2 Design Example 2: UASB Reactor IC Type (Milk Processing Mill);631
1.21.6.3;6.3 Design Example 3: UASB Reactor IC Type (Cheese Mill);632
1.21.6.4;6.4 Design Example 4: Anaerobic Filter Reactor (Cheese Mill);633
1.21.7;7 Trends in Anaerobic Treatment of Milk Processing Effluents;634
1.21.7.1;7.1 Results of Recent Investigations on Anaerobic Treatment of Milk Wastewater;634
1.21.7.2;7.2 Future Expected Developments;637
1.22;18 Biological Wastewater Treatment of Nutrient-Deficient Tomato-Processing and Bean-Processing Wastewater;649
1.22.1;1 Introduction;649
1.22.2;2 Wastewater Characteristics;651
1.22.3;3 Treatment Technologies;653
1.22.4;4 Novel Biological Treatment Technologies;653
1.22.4.1;4.1 Pilot-Scale Anaerobic/Aerobic Treatment System;654
1.22.4.1.1;4.1.1 System Setup;655
1.22.4.1.2;4.1.2 Performance of Anaerobic/Aerobic System;656
1.22.4.1.3;4.1.3 Performance of Portable Microza Ultrafiltration System;660
1.22.4.1.4;4.1.4 Impact of Prefermentation in the Anaerobic Tank;661
1.22.4.2;4.2 Bench-Scale Anaerobic/Aerobic Treatment System;664
1.22.4.2.1;4.2.1 System Setup;665
1.22.4.2.2;4.2.2 Effluent Quality in the Anaerobic/Aerobic Systems;666
1.22.4.2.3;4.2.3 HRT Effect on Anaerobic Tank Performance;670
1.22.4.2.4;4.2.4 Temperature Effect on System Performance;671
1.22.4.3;4.3 Bench-Scale UASB-Anoxic/Oxic System;673
1.22.4.3.1;4.3.1 System Setup;674
1.22.4.3.2;4.3.2 System Operation;676
1.22.4.3.3;4.3.3 Performance Analysis;676
1.22.4.3.4;4.3.4 Impacts of Process Parameters;680
1.22.4.3.5;4.3.5 Inert Accumulation;680
1.22.4.3.6;4.3.6 Post-UASB Treatment;680
1.22.5;5 Wastewater Characterization and Modeling;682
1.22.5.1;5.1 Characterization of Tomato-Processing Wastewater;682
1.22.5.1.1;5.1.1 Introduction;682
1.22.5.1.2;5.1.2 Experimental System Setup;684
1.22.5.1.3;5.1.3 Determination of Wastewater Fractions and Biokinetic Coefficients;684
1.22.5.1.4;5.1.4 Characterization Results;687
1.22.5.2;5.2 Modeling of Tomato-Processing Wastewater Treatment System;688
1.22.5.2.1;5.2.1 Introduction;688
1.22.5.2.2;5.2.2 Model Calibration;691
1.22.5.2.3;5.2.3 Model Scenario;692
1.22.5.2.4;5.2.4 Modeling Results;692
1.22.6;6 Design Example;694
1.22.7;7 Economic Evaluation of Treatment Alternatives;696
1.22.8;8 Summary;699
1.23;19 Animal Glue Production from Skin Wastes;705
1.23.1;1 Introduction;705
1.23.1.1;1.1 Animal Skin Generation Rates;706
1.23.1.2;1.2 Hide Removal from Cattle and Sheep;706
1.23.2;2 Animal Glue;706
1.23.2.1;2.1 General;707
1.23.2.2;2.2 Type;707
1.23.2.3;2.3 Properties and Chemical Composition;708
1.23.2.4;2.4 Manufacturing;709
1.23.3;3 Pretreatment and Conditioning;710
1.23.3.1;3.1 Acidic Pretreatment;710
1.23.3.2;3.2 Alkali (Lime) Pretreatment;710
1.23.3.3;3.3 Enzymic Proteolysis;711
1.23.4;4 Extraction;711
1.23.4.1;4.1 Denaturation;712
1.23.4.2;4.2 Thermal Treatment;712
1.23.5;5 Chemical Modification;713
1.23.6;6 Application;714
1.23.7;7 Case Study: Production of Glue;714
1.24;20 An Integrated Biotechnological Process for Fungal Biomass Protein Production and Wastewater Reclamation;718
1.24.1;1 Introduction;718
1.24.2;2 Fungal Biomass Protein Production;719
1.24.2.1;2.1 Fungal Biomass Protein;719
1.24.2.2;2.2 Fungal Biomass Protein Production;720
1.24.2.3;2.3 Fungal Biomass Protein Production from Starch Processing Wastewater;721
1.24.3;3 Reactor Configuration and Process Flow Diagram;725
1.24.3.1;3.1 Reactor Configuration;725
1.24.3.2;3.2 Process Flow Diagram;727
1.24.4;4 Oxygen Transfer and Hydrodynamics;728
1.24.4.1;4.1 Oxygen Transfer;728
1.24.4.2;4.2 Rheological Properties and DO levels;729
1.24.4.3;4.3 Hydrodynamic Characteristics and Oxygen Transfer Coefficient;730
1.24.4.4;4.4 Aeration Rate and Oxygen Transfer Coefficient;730
1.24.5;5 Process Design and Operation;733
1.24.5.1;5.1 Batch Process;733
1.24.5.2;5.2 Semi-continuous Process;734
1.24.5.3;5.3 Continuous Process;736
1.24.6;6 Summary and Conclusions;738
1.25;21 Algae Harvest Energy Conversion;741
1.25.1;1 Introduction;741
1.25.1.1;1.1 Algae Description;741
1.25.1.2;1.2 Composition of Algae;742
1.25.1.3;1.3 Classification of Microalgae;742
1.25.2;2 Cultivation;743
1.25.2.1;2.1 Factors Affecting Cultivation;743
1.25.2.1.1;2.1.1 Algal Strain;744
1.25.2.1.2;2.1.2 CO2 Enrichment;744
1.25.2.1.3;2.1.3 Microalgae Physiology;744
1.25.2.1.4;2.1.4 Sunlight;744
1.25.2.1.5;2.1.5 Habitat;744
1.25.2.2;2.2 Cultivation System;745
1.25.2.2.1;2.2.1 Open Pond System;745
1.25.2.2.2;2.2.2 Closed System;747
1.25.2.2.3;2.2.3 Semiclosed Systems;749
1.25.2.3;2.3 Harvesting;750
1.25.2.3.1;2.3.1 Flotation;750
1.25.2.3.2;2.3.2 Flocculation;750
1.25.2.3.3;2.3.3 Centrifugation;751
1.25.3;3 Biofuel from Algae;751
1.25.3.1;3.1 Biodiesel;751
1.25.3.2;3.2 Hydrogen Fuel;753
1.25.3.3;3.3 Biogas;753
1.25.3.4;3.4 Biomass;754
1.25.3.5;3.5 Ethanol;754
1.25.4;4 Commercial Prospects and Problems;754
1.25.4.1;4.1 Prospect;754
1.25.4.1.1;4.1.1 Faster;755
1.25.4.1.2;4.1.2 Fatter;755
1.25.4.1.3;4.1.3 Cheaper;755
1.25.4.1.4;4.1.4 Easier/Better;756
1.25.4.1.5;4.1.5 Coproduct Fraction Marketing Strategies;756
1.25.4.2;4.2 Case Study;756
1.25.4.3;4.3 Problems;757
1.25.5;5 Summary;757
1.26;22 Living Machines;760
1.26.1;1 Introduction;760
1.26.1.1;1.1 Ecological Pollution;760
1.26.1.2;1.2 Bioremediation Strategies and Advanced Ecologically Engineered Systems;762
1.26.2;2 Living Machines: as Concept in Bioremediation;763
1.26.2.1;2.1 Advantages of Living Machines;765
1.26.2.2;2.2 Limitations of Living Machines;766
1.26.3;3 Components of the Living Machines;766
1.26.3.1;3.1 Microbial Communities;766
1.26.3.2;3.2 Macro-bio Communities (Animal Diversity);767
1.26.3.3;3.3 Photosynthetic Communities;769
1.26.3.4;3.4 Nutrient and Micro-nutrient Reservoirs;769
1.26.4;4 Types of Living Machines or Restorers;770
1.26.4.1;4.1 Constructed Wetlands;770
1.26.4.2;4.2 Lake Restorers;771
1.26.4.3;4.3 Eco-Restorers;772
1.26.4.4;4.4 Reedbeds;774
1.26.5;5 Principle Underlying the Construction of Living Machines;774
1.26.5.1;5.1 Living Machine Design to be Consistent with Ecological Principles;775
1.26.5.2;5.2 Living Machine Design to Deal with Site-Specific Situation;775
1.26.5.3;5.3 Living Machine Design to Maintain the Independence of Its Functional Requirements;776
1.26.5.4;5.4 Living Machine Design to Enhance Efficiency in Energy and Information;777
1.26.5.5;5.5 Living Machines Design to Acknowledge and Retain it Values and Purposes;777
1.26.6;6 Operationalization of Living Machine Technology;778
1.26.6.1;6.1 Anaerobic Reactor (Step 1);779
1.26.6.2;6.2 Anoxic Reactor (Step 2);779
1.26.6.3;6.3 Closed Aerobic Reactor (Step 3);779
1.26.6.4;6.4 Open Aerobic Reactors (Step 4);779
1.26.6.5;6.5 Clarifier (Step 5);780
1.26.6.6;6.6 Ecological Fluidized Beds (Step 6);780
1.26.7;7 Case Studies of Constructed Living Machine;780
1.26.7.1;7.1 Sewage Treatment in Cold Climates: South Burlington, Vermont AEES, USA;780
1.26.7.2;7.2 Environmental Restoration: Flax Pond, Harwich, Massachusetts, USA;782
1.26.7.3;7.3 Organic Industrial Wastewater Treatment from a Poultry Processing Waste in Coastal Maryland: Using Floating AEES Restorer;783
1.26.7.4;7.4 Architectural Integration: Oberlin College, Ohio, USA;783
1.26.7.5;7.5 Tyson Foods at Berlin, Maryland, USA;784
1.26.8;8 Future Prospects of Living Machines;785
1.26.8.1;8.1 Integration of Industrial and Agricultural Sectors: Proposed Eco-Park in Burlington, Vermont, USA;785
1.26.8.2;8.2 Aquaculture;786
1.27;23 Global Perspective of Anaerobic Treatment of Industrial Wastewater;790
1.27.1;1 Global Perspective of Anaerobic Treatment;790
1.27.2;2 Development of the Anaerobic Processes;792
1.27.2.1;2.1 History of Anaerobic Treatment;792
1.27.2.2;2.2 Industrial Wastewater Treatment;794
1.27.3;3 Anaerobic Biochemistry and Microbiology;795
1.27.3.1;3.1 Hydrolysis;796
1.27.3.2;3.2 Acidogenesis;796
1.27.3.3;3.3 Acetogenesis;797
1.27.3.4;3.4 Methanogenesis;797
1.27.4;4 Comparison Between Aerobic and Anaerobic Processes;798
1.27.5;5 Global Applications of Anaerobic Treatment;801
1.27.5.1;5.1 The Number of Anaerobic Treatment Plants Installed Worldwide;801
1.27.5.2;5.2 Types of Anaerobic Treatment Plants Installed Worldwide;802
1.27.5.2.1;5.2.1 Anaerobic Contact Process;802
1.27.5.2.2;5.2.2 Upflow Anaerobic Sludge Blanket;802
1.27.5.2.3;5.2.3 Fixed Film or Anaerobic Filter;802
1.27.5.2.4;5.2.4 Fluidized Bed System;802
1.27.5.2.5;5.2.5 Hybrid;803
1.27.5.2.6;5.2.6 Expanded Granular Sludge Bed and Internal Circulation Systems;803
1.27.5.3;5.3 Scope of Industrial Applications;803
1.27.5.4;5.4 The Development of UASB and EGSB;803
1.27.6;6 Applications of Anaerobic Processes for Industrial Wastewater;804
1.27.6.1;6.1 Anaerobic Fluidized Bed Reactor;804
1.27.6.2;6.2 Upflow Anaerobic Sludge Blanket Reactor;805
1.27.6.3;6.3 Upflow Anaerobic Filter;808
1.27.6.4;6.4 Anaerobic Fixed Bed Reactor;810
1.27.6.5;6.5 Anaerobic Baffled Reactor;810
1.27.6.6;6.6 Expanded Granular Sludge Bed Reactor;812
1.27.6.7;6.7 Hybrid Anaerobic Reactors;813
1.27.7;7 The Future of Anaerobic Treatment;815
1.27.8;8 Conclusion;817
1.28;1 Appendix: Conversion Factors for Environmental Engineers;825
1.28.1;1 Constants and Conversion Factors;826
1.28.2;2 Basic and Supplementary Units;866
1.28.3;3 Derived Units and Quantities;867
1.28.4;4 Physical Constants;869
1.28.5;5 Properties of Water;869
1.28.6;Periodic Table of the Elements;869
1.29;Index;871



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.