Wang / Neogi | Nanoscale Photonics and Optoelectronics | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band 9, 231 Seiten

Reihe: Lecture Notes in Nanoscale Science and Technology

Wang / Neogi Nanoscale Photonics and Optoelectronics


1. Auflage 2010
ISBN: 978-1-4419-7587-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 9, 231 Seiten

Reihe: Lecture Notes in Nanoscale Science and Technology

ISBN: 978-1-4419-7587-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



The intersection of nanostructured materials with photonics and electronics shows great potential for clinical diagnostics, sensors, ultrafast telecommunication devices, and a new generation of compact and fast computers. Nanophotonics draws upon cross-disciplinary expertise from physics, materials science, chemistry, electrical engineering, biology, and medicine to create novel technologies to meet a variety of challenges. This is the first book to focus on novel materials and techniques relevant to the burgeoning area of nanoscale photonics and optoelectronics, including novel-hybrid materials with multifunctional capabilities and recent advancements in the understanding of optical interactions in nanoscale materials and quantum-confined objects. Leading experts provide a fundamental understanding of photonics and the related science and technology of plasmonics, polaritons, quantum dots for nanophotonics, nanoscale field emitters, near-field optics, nanophotonic architecture, and nanobiophotonic materials.

Wang / Neogi Nanoscale Photonics and Optoelectronics jetzt bestellen!

Weitere Infos & Material


1;Preface;6
2;Contents;8
3;Contributors;9
4;1 Spontaneous Emission Control in a Plasmonic Structure;12
4.1;1 Introduction;12
4.2;2 Purcell Enhancement Effect in a Uniform and Periodically Patterned Metal Surface;14
4.2.1;2.1 Quantization of Plasmonic Field;14
4.2.2;2.2 Quantum Electrodynamics of the Exciton Lying in the Vicinity of a Uniform Metal Surface;15
4.2.3;2.3 Purcell Effect for the Exciton in a Periodically Patterned Structure and Its Relation to Purcell Effect in a Cavity;19
4.2.4;2.4 Experimental Study of Purcell Enhancement Effect of the Exciton Lying in a Metal--Insulator--Metal Heterostructure;22
4.2.4.1;2.4.1 Sample Preparation;23
4.2.4.2;2.4.2 Photoluminescence Measurement;24
4.2.4.3;2.4.3 Time-Resolved (Decay-Time) Measurement;25
4.3;3 Spontaneous Emission Modification in a Surface Plasmon Defect Cavity;27
4.3.1;3.1 Spontaneous Emission Control in an SPP Defect Cavity;27
4.3.2;3.2 Surface Plasmon Grating as a Cavity;32
4.4;4 Conclusions;35
4.5;References;35
5;2 Surface Plasmon Enhanced Solid-State Light-Emitting Devices;38
5.1;1 Introduction;38
5.2;2 Background of Solid-State Light-Emitting Devices;41
5.3;3 Surface Plasmon Enhanced Light Emission;42
5.4;4 Surface Plasmon Coupling Mechanism;44
5.5;5 Improvements of IQEs and Emission Rates;47
5.6;6 Applications for Organic Light-Emitting Materials;50
5.7;7 Applications for CdSe-Based Quantum Dots;51
5.8;8 Applications for Silicon-Based Nanocrystals;53
5.9;9 Conclusions;54
5.10;References;55
6;3 Polariton Devices Based on Wide Bandgap Semiconductor Microcavities;58
6.1;1 Introduction;58
6.1.1;1.1 Distributed Bragg Reflectors;59
6.1.2;1.2 Cavity Polaritons;60
6.1.3;1.3 Polariton Lasing;62
6.2;2 Experimental Studies on Wide Bandgap Semiconductor Microcavities;65
6.2.1;2.1 GaN-Based Microcavities;65
6.2.2;2.2 ZnO-Based Microcavities;68
6.3;3 Conclusions;72
6.4;References;73
7;4 Search for Negative Refraction in the Visible Region of Light by Fluorescent Microscopy of Quantum Dots Infiltrated into Regular and Inverse Synthetic Opals;76
7.1;1 Experimental Details;77
7.2;References;86
8;5 Self-Assembled Guanosine-Based Nanoscale Molecular Photonic Devices;88
8.1;1 Introduction;88
8.2;2 Photonic Crystals for the UltravioletVisible Region;90
8.2.1;2.1 Material System for UV--Visible Photonic Crystals;92
8.2.2;2.2 GaN-Based Photonic Crystals;93
8.2.3;2.3 Diamond-Based Photonic Crystals;94
8.3;3 Self-assembled Guanine-Based Oligonucleotide Molecules;94
8.4;4 Refractive Index Measurement of SAGC by Ellipsometer;98
8.5;5 Modeling of Photonic Crystal;100
8.5.1;5.1 Design of Photonic Crystal with Software MPB;100
8.5.2;5.2 Photonic Crystal Slab with ;101
8.5.3;5.3 Photonic Crystal Slab with ;103
8.5.4;5.4 Photonic Crystal Slab with ;104
8.5.5;5.5 Verification of the Photonic Crystal Designs by EMPLab TM ;105
8.6;6 Discussion;105
8.7;References;107
9;6 Carbon Nanotubes for Optical Power Limiting Applications;111
9.1;1 Introduction;111
9.2;2 Mechanisms of Optical Power Limiting;114
9.2.1;2.1 Nonlinear Absorption;114
9.2.1.1;2.1.1 Reverse Saturable Absorption (RSA);114
9.2.1.2;2.1.2 Multiphoton Absorption (MPA);115
9.2.2;2.2 Nonlinear Refraction;116
9.2.3;2.3 Induced Scattering;118
9.2.4;2.4 Photo-refraction;118
9.3;3 Optical Power Limiting (OPL) Chromophores;119
9.3.1;3.1 Organics and Organometallics;119
9.3.2;3.2 Multiphoton Absorbers;120
9.3.3;3.3 Reverse Saturable Absorbers;120
9.3.4;3.4 Azo Dyes;121
9.4;4 Carbon-Based Materials for Optical Power Limiting;122
9.4.1;4.1 Fullerene and Carbon Black Suspension (CBS);122
9.4.2;4.2 Carbon Nanotubes (CNTs);122
9.4.2.1;4.2.1 Solubilized and Suspended Carbon Nanotubes;125
9.4.2.2;4.2.2 Combination of CNTs and Other OPL Components;128
9.5;5 Summary and Future Outlook;133
9.6;References;133
10;7 Field Emission Properties of ZnO, ZnS, and GaN Nanostructures;140
10.1;1 Introduction;140
10.2;2 ZnO Nanostructures;141
10.3;3 Field Emission Properties;143
10.4;4 ZnS Nanostructures;152
10.5;5 GaN Nanorods;154
10.6;References;160
11;8 Growth, Optical, and Transport Properties of Self-Assembled InAs/InP Nanostructures;166
11.1;1 Introduction;167
11.2;2 Growth of InAs/InP Nanostructures;169
11.2.1;2.1 P--As Exchange Process;169
11.2.2;2.2 Role of Vicinal Substrates;171
11.2.3;2.3 Influence of Growth Parameters on InAs Nanostructures;174
11.2.4;2.4 Postdeposition Modifications of InAs Nanostructures;175
11.2.5;2.5 Growth of InAs/InP Quantum Dots;176
11.2.6;2.6 As--P Exchange Process During Capping;176
11.2.7;2.7 Double-Cap Technique of Growth of InAs/InP Quantum Dots;177
11.3;3 Optical Properties of InAs/InP Nanostructures;179
11.3.1;3.1 Photoluminescence and Absorbance of InAs/InP Quantum Dot Samples;179
11.3.2;3.2 Simulation of the InAs/InP Quantum Dots Spectra;182
11.3.3;3.3 Temperature Effects in Photoluminescence and Transmission of the InAs/InP Quantum Dot Samples;185
11.3.4;3.4 Photoluminescence and Absorbance in InAs/InP(001) Quantum Well and Quantum Wire Systems;188
11.3.5;3.5 Thermally Induced Change of Dimensionality in Coupled InAs/InP Quantum Wire Nanostructures;195
11.3.6;3.6 Polarization-Dependent Transmittance and Photoluminescence of InAs/InP Nanostructures;198
11.4;4 Transport in Coupled InAs/InP Nanostructures;202
11.4.1;4.1 The Temperature-Dependent Magneto-Transport Experiments;202
11.4.2;4.2 Controlled Transport Anisotropy and Interface Roughness Scattering;209
11.4.3;4.3 Shubnikov-de-Haas Oscillations and Quantum Hall Regime;212
11.4.4;4.4 Weak Localization in Coupled InAs/InP Quantum Wire Nanostructures;215
11.5;5 Application of InAs/InP Nanostructures;220
11.6;6 Summary;221
11.7;References;223
12;Index;228



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.