E-Book, Englisch, Band 9, 231 Seiten
Wang / Neogi Nanoscale Photonics and Optoelectronics
1. Auflage 2010
ISBN: 978-1-4419-7587-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 9, 231 Seiten
Reihe: Lecture Notes in Nanoscale Science and Technology
ISBN: 978-1-4419-7587-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
The intersection of nanostructured materials with photonics and electronics shows great potential for clinical diagnostics, sensors, ultrafast telecommunication devices, and a new generation of compact and fast computers. Nanophotonics draws upon cross-disciplinary expertise from physics, materials science, chemistry, electrical engineering, biology, and medicine to create novel technologies to meet a variety of challenges. This is the first book to focus on novel materials and techniques relevant to the burgeoning area of nanoscale photonics and optoelectronics, including novel-hybrid materials with multifunctional capabilities and recent advancements in the understanding of optical interactions in nanoscale materials and quantum-confined objects. Leading experts provide a fundamental understanding of photonics and the related science and technology of plasmonics, polaritons, quantum dots for nanophotonics, nanoscale field emitters, near-field optics, nanophotonic architecture, and nanobiophotonic materials.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;8
3;Contributors;9
4;1 Spontaneous Emission Control in a Plasmonic Structure;12
4.1;1 Introduction;12
4.2;2 Purcell Enhancement Effect in a Uniform and Periodically Patterned Metal Surface;14
4.2.1;2.1 Quantization of Plasmonic Field;14
4.2.2;2.2 Quantum Electrodynamics of the Exciton Lying in the Vicinity of a Uniform Metal Surface;15
4.2.3;2.3 Purcell Effect for the Exciton in a Periodically Patterned Structure and Its Relation to Purcell Effect in a Cavity;19
4.2.4;2.4 Experimental Study of Purcell Enhancement Effect of the Exciton Lying in a Metal--Insulator--Metal Heterostructure;22
4.2.4.1;2.4.1 Sample Preparation;23
4.2.4.2;2.4.2 Photoluminescence Measurement;24
4.2.4.3;2.4.3 Time-Resolved (Decay-Time) Measurement;25
4.3;3 Spontaneous Emission Modification in a Surface Plasmon Defect Cavity;27
4.3.1;3.1 Spontaneous Emission Control in an SPP Defect Cavity;27
4.3.2;3.2 Surface Plasmon Grating as a Cavity;32
4.4;4 Conclusions;35
4.5;References;35
5;2 Surface Plasmon Enhanced Solid-State Light-Emitting Devices;38
5.1;1 Introduction;38
5.2;2 Background of Solid-State Light-Emitting Devices;41
5.3;3 Surface Plasmon Enhanced Light Emission;42
5.4;4 Surface Plasmon Coupling Mechanism;44
5.5;5 Improvements of IQEs and Emission Rates;47
5.6;6 Applications for Organic Light-Emitting Materials;50
5.7;7 Applications for CdSe-Based Quantum Dots;51
5.8;8 Applications for Silicon-Based Nanocrystals;53
5.9;9 Conclusions;54
5.10;References;55
6;3 Polariton Devices Based on Wide Bandgap Semiconductor Microcavities;58
6.1;1 Introduction;58
6.1.1;1.1 Distributed Bragg Reflectors;59
6.1.2;1.2 Cavity Polaritons;60
6.1.3;1.3 Polariton Lasing;62
6.2;2 Experimental Studies on Wide Bandgap Semiconductor Microcavities;65
6.2.1;2.1 GaN-Based Microcavities;65
6.2.2;2.2 ZnO-Based Microcavities;68
6.3;3 Conclusions;72
6.4;References;73
7;4 Search for Negative Refraction in the Visible Region of Light by Fluorescent Microscopy of Quantum Dots Infiltrated into Regular and Inverse Synthetic Opals;76
7.1;1 Experimental Details;77
7.2;References;86
8;5 Self-Assembled Guanosine-Based Nanoscale Molecular Photonic Devices;88
8.1;1 Introduction;88
8.2;2 Photonic Crystals for the UltravioletVisible Region;90
8.2.1;2.1 Material System for UV--Visible Photonic Crystals;92
8.2.2;2.2 GaN-Based Photonic Crystals;93
8.2.3;2.3 Diamond-Based Photonic Crystals;94
8.3;3 Self-assembled Guanine-Based Oligonucleotide Molecules;94
8.4;4 Refractive Index Measurement of SAGC by Ellipsometer;98
8.5;5 Modeling of Photonic Crystal;100
8.5.1;5.1 Design of Photonic Crystal with Software MPB;100
8.5.2;5.2 Photonic Crystal Slab with ;101
8.5.3;5.3 Photonic Crystal Slab with ;103
8.5.4;5.4 Photonic Crystal Slab with ;104
8.5.5;5.5 Verification of the Photonic Crystal Designs by EMPLab TM ;105
8.6;6 Discussion;105
8.7;References;107
9;6 Carbon Nanotubes for Optical Power Limiting Applications;111
9.1;1 Introduction;111
9.2;2 Mechanisms of Optical Power Limiting;114
9.2.1;2.1 Nonlinear Absorption;114
9.2.1.1;2.1.1 Reverse Saturable Absorption (RSA);114
9.2.1.2;2.1.2 Multiphoton Absorption (MPA);115
9.2.2;2.2 Nonlinear Refraction;116
9.2.3;2.3 Induced Scattering;118
9.2.4;2.4 Photo-refraction;118
9.3;3 Optical Power Limiting (OPL) Chromophores;119
9.3.1;3.1 Organics and Organometallics;119
9.3.2;3.2 Multiphoton Absorbers;120
9.3.3;3.3 Reverse Saturable Absorbers;120
9.3.4;3.4 Azo Dyes;121
9.4;4 Carbon-Based Materials for Optical Power Limiting;122
9.4.1;4.1 Fullerene and Carbon Black Suspension (CBS);122
9.4.2;4.2 Carbon Nanotubes (CNTs);122
9.4.2.1;4.2.1 Solubilized and Suspended Carbon Nanotubes;125
9.4.2.2;4.2.2 Combination of CNTs and Other OPL Components;128
9.5;5 Summary and Future Outlook;133
9.6;References;133
10;7 Field Emission Properties of ZnO, ZnS, and GaN Nanostructures;140
10.1;1 Introduction;140
10.2;2 ZnO Nanostructures;141
10.3;3 Field Emission Properties;143
10.4;4 ZnS Nanostructures;152
10.5;5 GaN Nanorods;154
10.6;References;160
11;8 Growth, Optical, and Transport Properties of Self-Assembled InAs/InP Nanostructures;166
11.1;1 Introduction;167
11.2;2 Growth of InAs/InP Nanostructures;169
11.2.1;2.1 P--As Exchange Process;169
11.2.2;2.2 Role of Vicinal Substrates;171
11.2.3;2.3 Influence of Growth Parameters on InAs Nanostructures;174
11.2.4;2.4 Postdeposition Modifications of InAs Nanostructures;175
11.2.5;2.5 Growth of InAs/InP Quantum Dots;176
11.2.6;2.6 As--P Exchange Process During Capping;176
11.2.7;2.7 Double-Cap Technique of Growth of InAs/InP Quantum Dots;177
11.3;3 Optical Properties of InAs/InP Nanostructures;179
11.3.1;3.1 Photoluminescence and Absorbance of InAs/InP Quantum Dot Samples;179
11.3.2;3.2 Simulation of the InAs/InP Quantum Dots Spectra;182
11.3.3;3.3 Temperature Effects in Photoluminescence and Transmission of the InAs/InP Quantum Dot Samples;185
11.3.4;3.4 Photoluminescence and Absorbance in InAs/InP(001) Quantum Well and Quantum Wire Systems;188
11.3.5;3.5 Thermally Induced Change of Dimensionality in Coupled InAs/InP Quantum Wire Nanostructures;195
11.3.6;3.6 Polarization-Dependent Transmittance and Photoluminescence of InAs/InP Nanostructures;198
11.4;4 Transport in Coupled InAs/InP Nanostructures;202
11.4.1;4.1 The Temperature-Dependent Magneto-Transport Experiments;202
11.4.2;4.2 Controlled Transport Anisotropy and Interface Roughness Scattering;209
11.4.3;4.3 Shubnikov-de-Haas Oscillations and Quantum Hall Regime;212
11.4.4;4.4 Weak Localization in Coupled InAs/InP Quantum Wire Nanostructures;215
11.5;5 Application of InAs/InP Nanostructures;220
11.6;6 Summary;221
11.7;References;223
12;Index;228




