Wang | Study on Signal Detection and Recovery Methods with Joint Sparsity | Buch | 978-981-99-4116-2 | www.sack.de

Buch, Englisch, 121 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 409 g

Reihe: Springer Theses

Wang

Study on Signal Detection and Recovery Methods with Joint Sparsity


1. Auflage 2024
ISBN: 978-981-99-4116-2
Verlag: Springer Nature Singapore

Buch, Englisch, 121 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 409 g

Reihe: Springer Theses

ISBN: 978-981-99-4116-2
Verlag: Springer Nature Singapore


The task of signal detection is deciding whether signals of interest exist by using their observed data. Furthermore, signals are reconstructed or their key parameters are estimated from the observations in the task of signal recovery. Sparsity is a natural characteristic of most of signals in practice. The fact that multiple sparse signals share the common locations of dominant coefficients is called by joint sparsity. In the context of signal processing, joint sparsity model results in higher performance of signal detection and recovery. This book focuses on the task of detecting and reconstructing signals with joint sparsity. The main contents include key methods for detection of joint sparse signals and their corresponding theoretical performance analysis, and methods for joint sparse signal recovery and their application in the context of radar imaging.

Wang Study on Signal Detection and Recovery Methods with Joint Sparsity jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Introduction.- Joint Sparse Signal Detection Based On Locally Most Powerful Test Under Gaussian Model.- Joint Sparse Signal Detection Based On Locally Most Powerful Test Under Generalized Gaussian Model.- Joint Sparse Signal Recovery Based On Look-Ahead Selection of Basis-Signals.- Joint Sparse Signal Recovery Based On Two-Level Sparsity.- Summary and Outlook.


Dr. Xueqian Wang obtained his Ph.D. degree at Tsinghua University, Beijing, China in 2020. His research is focused on target detection, information fusion, radar imaging, compressed sensing and distributed signal processing. He has published 18 articles in these fields, including 8 IEEE Transactions. Dr. Xueqian Wang has been awarded Postdoctoral Innovative Talent Support Program, Innovative Achievement of Postdoctoral Innovative Talent Support Program, Beijing Outstanding Graduate, and Excellent Doctoral Thesis of Tsinghua University.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.