Wang / Xu | Periodic Feedback Stabilization for Linear Periodic Evolution Equations | E-Book | www.sack.de
E-Book

E-Book, Englisch, 127 Seiten, eBook

Reihe: SpringerBriefs in Mathematics

Wang / Xu Periodic Feedback Stabilization for Linear Periodic Evolution Equations


1. Auflage 2016
ISBN: 978-3-319-49238-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 127 Seiten, eBook

Reihe: SpringerBriefs in Mathematics

ISBN: 978-3-319-49238-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book introduces a number of recent advances regarding periodic feedback stabilization for linear and time periodic evolution equations. First, it presents selected connections between linear quadratic optimal control theory and feedback stabilization theory for linear periodic evolution equations. Secondly, it identifies several criteria for the periodic feedback stabilization from the perspective of geometry, algebra and analyses respectively. Next, it describes several ways to design periodic feedback laws. Lastly, the book introduces readers to key methods for designing the control machines. Given its coverage and scope, it offers a helpful guide for graduate students and researchers in the areas of control theory and applied mathematics.

Wang / Xu Periodic Feedback Stabilization for Linear Periodic Evolution Equations jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1 Controlled Periodic Equations, LQ Problems and Periodic Stabilization. 1.1 Controlled Periodic Evolution Equations. 1.2 Linear Quadratic Optimal Control Problems. 1.2.1 Finite horizon case. 1.2.2 Infinite horizon case. 1.3 Relation between Periodic Stabilization and LQ Problems. 2 Criteria on Periodic Stabilization in Infinite Dimensional Cases. 2.1 Attainable Subspaces. 2.2 Three Criterions on Periodic Feedback Stabilization. 2.2.1 Multi-periodic feedback stabilization. 2.2.2 Proof of Theorem 2.1. 2.3 Applications2.3.1 Feedback realization in finite dimensional subspaces. 2.3.2 Applications to heat equations. 3 Criteria on Periodic Stabilization in Finite Dimensional Cases. 3.1 Null Controllable Subspaces. 3.2 Algebraic Criterion and Application. 3.2.1 The proof of (a),(c) in Theorem 3.1. 3.2.2 The proof of (a),(b) in Theorem 3.1. 3.2.3 Decay rate of stabilized equations. 3.3 Geometric Criterion. 4 Design of Simple Control Machines. 4.1 The First Kind of Simple Control Machines. 4.2 The Second Kind of Simple Control Machines–General Case. 4.3 The Second Kind of Simple Control Machines–Special Case 


Prof. Gengsheng Wang received his Ph.D. in Mathematics from Ohio University (Athens, USA) in 1994. He is currently Luojia Professor at the School of Mathematics and Statistics, and Director of the Institute of Mathematics, at Wuhan University, China. His research work mainly focus on optimal control problems, (in particular, time optimal control problems), controllability and stabilization for ordinary differential equations, and partial differential equations of parabolic type.

Dr. Yashan Xu received his Ph.D. in Mathematics from Fudan University (Shanghai, China) in 2006. He is currently an Associate Professor at the School of Mathematical Sciences, Fudan University, China. His research interests include differential games, optimal control theory and stabilization for evolution equations.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.