E-Book, Englisch, Band 147, 172 Seiten, eBook
Watanabe / Hashem Evolutionary Computations
Erscheinungsjahr 2012
ISBN: 978-3-540-39883-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
New Algorithms and their Applications to Evolutionary Robots
E-Book, Englisch, Band 147, 172 Seiten, eBook
Reihe: Studies in Fuzziness and Soft Computing
ISBN: 978-3-540-39883-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1. Evolutionary Algorithms: Revisited.- 1.1 Introduction.- 1.2 Stochastic Optimization Algorithms.- 1.3 Properties of Stochastic Optimization Algorithms.- 1.4 Variants of Evolutionary Algorithms.- 1.5 Basic Mechanisms of Evolutionary Algorithms.- 1.6 Similarities and Differences of Evolutionary Algorithms.- 1.7 Merits and Demerits of Evolutionary Algorithms.- 1.8 Summary.- 2. A Novel Evolution Strategy Algorithm.- 2.1 Introduction.- 2.2 Development of New Variation Operators.- 2.3 Proposed Novel Evolution Strategy.- 2.4 Proposed NES: How Does It Work?.- 2.5 Performance of the Proposed Evolution Strategy.- 2.6 Empirical Investigations for Exogenous Parameters.- 2.7 Summary.- 3. Evolutionary Optimization of Constrained Problems.- 3.1 Introduction.- 3.2 Constrained Optimization Problem.- 3.3 Constraint-Handling in Evolutionary Algorithms.- 3.4 Characteristics of the NES Algorithm.- 3.5 Construction of the Constrained Fitness Function.- 3.6 Test Problems.- 3.7 Implementation, Results and Discussions.- 3.8 Summary.- 4. An Incest Prevented Evolution Strategy Algorithm.- 4.1 Introduction.- 4.2 Incest Prevention: A Natural Phenomena.- 4.3 Proposed Incest Prevented Evolution Strategy.- 4.4 Performance of the Proposed Incest Prevented Evolution Strategy.- 4.5 Implementation and Experimental Results.- 4.6 Summary.- 5. Evolutionary Solution of Optimal Control Problems.- 5.1 Introduction.- 5.2 Conventional Variation Operators.- 5.3 Optimal Control Problems.- 5.4 Simulation Examples.- 5.5 Results and Discussions.- 5.6 Summary.- 6. Evolutionary Design of Robot Controllers.- 6.1 Introduction.- 6.2 A Mobile Robot with Two Independent Driving Wheels.- 6.3 Optimal Servocontroller Design for the Robot.- 6.4 Construction of the Fitness Function for the Controllers.- 6.5 Considerations for Design and Simulations.- 6.6 Results and Discussions.- 6.7 Summary.- 7. Evolutionary Behavior-Based Control of Mobile Robots.- 7.1 Introduction.- 7.2 An Evolution Strategy Using Statistical Information of Subgroups.- 7.3 Omnidirectional Mobile Robot.- 7.4 Fuzzy Behavior-Based Control System.- 7.5 Acquisition of Control System.- 7.6 Summary.- 8. Evolutionary Trajectory Planning of Autonomous Robots.- 8.1 Introduction.- 8.2 Fundamentals of Evolutionary Trajectory Planning.- 8.3 Formulation of the Problem for Trajectory Planning.- 8.4 Polygonal Obstacle Sensing and Its Representation.- 8.5 Special Representations of Evolutionary Components.- 8.6 Construction of the Fitness Function.- 8.7 Bounds for Evolutionary Parameters.- 8.8 Proposed Evolutionary Trajectory Planning Algorithm.- 8.9 Considerations and Simulations.- 8.10 Results and Discussions.- 8.11 Summary.- A. Definitions from Probability Theory and Statistics.- A.1 Random Variables, Distributions and Density Functions.- A.2 Characteristics Values of Probability Distributions.- A.2.1 One Dimensional Distributions:.- A.2.2 Multidimensional Distributions.- A.3 Special Distributions.- A.3.1 The Normal or Gaussian Distribution.- A.3.4 The Cauchy Distribution.- B. C-Language Source Code of the NES Algorithm.- C. Convergence Behavior of Evolution Strategies.- C.1 Convergence Reliability.- C.2 Convergence Velocity.- References.