E-Book, Englisch, 602 Seiten
Welham / Gezan / Clark Statistical Methods in Biology
1. Auflage 2014
ISBN: 978-1-4398-9805-5
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Design and Analysis of Experiments and Regression
E-Book, Englisch, 602 Seiten
ISBN: 978-1-4398-9805-5
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Written in simple language with relevant examples, this illustrative introductory book presents best practices in experimental design and simple data analysis. Taking a practical and intuitive approach, it only uses mathematical formulae to formalize the methods where necessary and appropriate. The text features extended discussions of examples that include real data sets arising from research. The authors analyze data in detail to illustrate the use of basic formulae for simple examples while using the GenStat® statistical package for more complex examples. Each chapter offers instructions on how to obtain the example analyses in GenStat and R.
Zielgruppe
Biological scientists with a limited mathematical or statistical background; research scientists and Ph.D. students who perform their own statistical analyses or consult with professional statisticians.
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Biowissenschaften Angewandte Biologie Bioinformatik
- Naturwissenschaften Biowissenschaften Angewandte Biologie Biomathematik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Datenanalyse, Datenverarbeitung
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Bioinformatik
Weitere Infos & Material
Introduction. A Review of Basic Statistics. Principles for Designing Experiments. Models for a Single Factor. Checking Model Assumptions. Transformations of the Response. Models with Simple Blocking Structure. Extracting Information about Treatments. Models with Complex Blocking Structure. Replication and Power. Dealing with Non-Orthogonality. Models for a Single Variate: Simple Linear Regression. Checking Model Fit. Models for Several Variates: Multiple Linear Regression. Models for Variates and Factors. Incorporating Structure: Mixed Models. Models for Curved Relationships. Models for Non-Normal Responses: Generalized Linear Models. Practical Design and Data Analysis for Real Studies. References. Appendices.