Wilkinson | Rundungsfehler | Buch | 978-3-540-04542-7 | sack.de

Buch, Deutsch, Band 44, 208 Seiten, Format (B × H): 133 mm x 203 mm, Gewicht: 253 g

Reihe: Heidelberger Taschenbücher

Wilkinson

Rundungsfehler


1. Auflage 1969
ISBN: 978-3-540-04542-7
Verlag: Springer Berlin Heidelberg

Buch, Deutsch, Band 44, 208 Seiten, Format (B × H): 133 mm x 203 mm, Gewicht: 253 g

Reihe: Heidelberger Taschenbücher

ISBN: 978-3-540-04542-7
Verlag: Springer Berlin Heidelberg


leicht zuganglichen Zeitschrift erschien.

Wilkinson Rundungsfehler jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


I. Grundlegende Rechenoperationen.- Digitale Rechenanlagen.- Festpunkt- und Gleitpunktrechnung.- Bezeichnungen.- Rundungsfehler bei Festpunktrechnung.- Akkumulierende Multiplikation bei Festpunktrechnung.- Rundungsfehler bei Gleitpunktrechnung.- Die Rundung bei Verwendung eines einfach langen Akkumulators.- Vergleich von Festpunkt- und Gleitpunktrechnung.- Zusammengesetzte Gleitpunktoperationen.- Verschärfung der Abschätzungen.- Summen und innere Produkte bei akkumulierender Gleitpunktrechnung.- Statistische Fehlerabschätzungen.- Blockskalierte Vektoren und Matrizen.- Grundsätzliche Beschränkungen beim Rechnen mit t-Stellen.- Schlecht konditionierte Probleme.- Konditionszahlen.- Rundungsfehler während der Rechnung.- Anmerkungen.- II. Das Rechnen Mit Polynomen.- Die Auswertung von Potenzreihen.- Festpunktdarstellung.- Gleitpunktdarstellung.- Nullstellenberechnung bei Funktionen, die durch Potenzreihen gegeben sind.- Polynome mit beliebigen Koeffizienten.- Die Kondition von Polynomen hinsichthch der Bestimmung von Nullstellen.- Einige typische Verteilungen von Nullstellen.- Lineare Verteilung von Nullstellen.- Geometrische Verteilung.- Tschebyscheff-Polynome.- Der Einfluß der Kondition der Nullsteflen von Polynomen.- Bestimmung der Nuflstellen.- Iterative Verfahren.- Der Einfluß von Rundungsfehlern beim Newtonschen Verfahren.- Einfache Beispiele.- Das Abdividieren von Nullstellen.- Die Fehler beim Abdividieren von Nullstellen.- Beispiele fiir das Abdividieren von Nuflstellen.- Das Abdividieren von Nullstellen bei schlecht konditionierten Polynomen.- Allgemeine Bemerkungen zur Iteration und zum Abdividieren.- Verbesserung mit dem ursprünglichen Polynom.- Andere iterative Verfahren.- Das Graeffe-Verfahren.- Vorwärtsuntersuchung des Graeffe-Verfahrens.- Derrelative Fehler der berechneten Koeffizienten.- Numerisches Beispiel.- Verschlechterung der Kondition.- Allgemeine Bemerkungen zur Nuflstellenberechnung bei Polynomen.- Anmerkungen.- III. Das Rechnen Mit Matrizen.- Einführung.- Vektor- und Matrizennormen.- Fehlerunter suchungen bei einfachen Matrixoperationen.- Matrixmultiplikation.- Matrixoperationen mit blockskalierender Arithmetik.- Gewöhnliche standardisierte blockskalierte Matrizen.- Orthogonalisierung von Vektoren.- Numerisches Beispiel.- Der allgemeine Fall.- Die Lösung linearer Gleichungssysteme und die Invertierung von Matrizen.- Das Runden der Elemente der Koeffizientenmatrix.- Fehleruntersuchung beim Gaußschen Eliminationsverfahren.- Die rechnerischen Gleichungen.- Abschätzungen bei Gleitpunktarithmetik.- Gaußsche Elimination mit Festpunktarithmetik.- Die Berechnung von Determinanten.- Die Auflösung eines gestaffelten Gleichungssystems bei Benutzung gewöhnlicher Gleitpunktarithmetik.- Die Genauigkeit der berechneten Lösung.- Die Lösung gestaffelter Gleichungssysteme unter Benutzung von Gleitpunktarithmetik mit akkumulierender Multiplikation.- Die Invertierung einer Dreiecksmatrix.- Die Genauigkeit der Lösung eines gestaffelten Gleichungssystems.- Die Auflösung eines beliebigen Gleichungssystems.- Die Invertierung behebiger Matrizen.- Rechts- und Linksinverse.- Numerisches Beispiel.- Bemerkungen zu diesem Beispiel.- Die Zerlegung in Dreiecksmatrizen mit dem verkürzten Gaußschen Algorithmus.- Die Zerlegung in Dreiecksmatrizen mit Spaltenpivot suche.- Positiv definite Matrizen.- Numerisches Beispiel.- Anmerkungen zur Lösung.- Die Residuen bei Gleichungsauflösung mit blockskalierender Arithmetik.- Iterative Verbesserung der Lösung.- Die praktische Durchführung des Verfahrens.- Untersuchung derpraktischen Rechenvorschrift.- Bemerkungen zur Genauigkeit der Lösung.- Die Verwendung einer Schätzung für ?A-1 Schätzung für ?.- Abschätzung der berechneten Inversen.- Die Verwendung einer genäherten Inversen zur Gleichungsauflösung.- Ein Iterations verfahren, welches die genäherte Inverse benutzt.- Numerisches Beispiel.- Die Empfindlichkeit der Eigenwerte einer Matrix.- Die Empfindlichkeit eines einzelnen Eigenwertes.- Ein Beispiel mit schlecht konditionierten Eigenwerten.- Nachträgliche Abschätzung für den berechneten Eigenwert und Eigenvektor einer reellen symmetrischen Matrix.- Berechnung der Eigenvektoren einer symmetrischen Tridiagonalmatrix.- Berücksichtigung der Rundungsfehler.- Berechnung der Eigenwerte einer unteren Hessenberg-Matrix.- Die Berechnung von f (?) mit akkumulierender Multiplikation.- Die Störung der Eigenwerte.- Numerisches Beispiel.- Anmerkungen.- Literatur.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.