E-Book, Englisch, Band 963, 413 Seiten
Wilson SUMO Regulation of Cellular Processes
2. Auflage 2017
ISBN: 978-3-319-50044-7
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 963, 413 Seiten
Reihe: Advances in Experimental Medicine and Biology
ISBN: 978-3-319-50044-7
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
This is the second edition of a very well received book that details how the sumoylation system functions and how it modulates numerous cellular activities. SUMO is a post-translational modifier in the ubiquitin super-family that has gained recognition over the last twenty years as an essential and prevalent regulatory molecule. Individual chapters explore the biochemistry, molecular biology, and cell biology of the sumoylation system and its substrate proteins.The book is divided into three themed parts: Molecular Functions (I), Cell Growth Regulation (II), and Diseases (III). Parts I and II focus on the contribution of sumoylation to cellular activities in both the nuclear and cytoplasmic compartments. The nuclear activities covered include nucleic acid metabolism (both RNA and DNA), chromosome structure and replication, and nucleocytoplasmic transport. Cytoplasmic processes presented include regulation of membrane ion channels, general metabolism, and apoptotic signalling. Topics in Part III include the role of sumoylation in developmental abnormalities (craniofacial and cardiovascular), diabetes, neurodegenerative diseases, cancer, and infections with viruses and bacteria.Each of the corresponding chapter authors is an active researcher who has made significant contributions to understanding sumoylation. This second edition provides updates and revisions to most of the original chapters plus adds six new chapters to address important developing areas of sumoylation research.This volume is intended for a scientific audience from undergraduates to independent researchers. The content will serve as both a solid introduction for the novice reader and an in depth treatment for the advanced scholar.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;8
3;1: Introduction to Sumoylation;10
3.1;1.1 The Sumo Proteins;10
3.2;1.2 The Enzymology of Sumoylation;12
3.3;1.3 Sumoylation Functions;14
3.4;1.4 Conclusion;16
3.5;References;17
4;Part I: Molecular Functions;22
4.1;2: Roles of Sumoylation in mRNA Processing and Metabolism;23
4.1.1;2.1 A Brief Introduction to RNA Processing Events, Interconnections to Transcription and Export;23
4.1.2;2.2 RNA Processing Factors as Sumoylation Substrates;24
4.1.3;2.3 5? Capping;29
4.1.4;2.4 Splicing;29
4.1.5;2.5 3? End Processing;31
4.1.6;2.6 Transcription Termination;33
4.1.7;2.7 Sumoylation of hnRNPs;34
4.1.8;2.8 Extending the Role of Sumo to mRNA Export;35
4.1.9;2.9 Sumo and RNA Editing;36
4.1.10;2.10 Conclusions;36
4.1.11;References;36
4.2;3: SUMO and Chromatin Remodeling;42
4.2.1;3.1 Introduction;43
4.2.2;3.2 Histone Sumoylation;43
4.2.3;3.3 SUMO and Higher Order Chromatin Structure;45
4.2.4;3.4 Telomeres and Centromeres;46
4.2.5;3.5 SUMO-Dependent Recruitment of General Transcriptional Corepressors;48
4.2.6;3.6 SUMO-Dependent Modulation of General Coregulator Activity;50
4.2.7;3.7 The Role of SUMO E3 Ligases in Chromatin Remodelling;51
4.2.8;3.8 Global Analysis of Chromatin Modification by SUMO;52
4.2.9;References;53
4.3;4: Functions of SUMO in the Maintenance of Genome Stability;58
4.3.1;4.1 Introduction;59
4.3.2;4.2 Components of the SUMO Pathway;60
4.3.2.1;4.2.1 SUMO Proteins;60
4.3.2.2;4.2.2 SUMO Ligases;60
4.3.2.3;4.2.3 SUMO Proteases;61
4.3.2.4;4.2.4 SUMO-Targeted Ubiquitin Ligases;62
4.3.2.5;4.2.5 SUMO-Targeted Ubiquitin Proteases;64
4.3.3;4.3 SUMO Proteomics;65
4.3.4;4.4 Effects of SUMO on DNA Replication and Replication Stress;66
4.3.4.1;4.4.1 SUMO in Replication Initiation;66
4.3.4.2;4.4.2 SUMO at Replication Forks and in Replication Stress;67
4.3.5;4.5 Effects of SUMO on Homologous Recombination;68
4.3.5.1;4.5.1 MMS21-Dependent Sumoylation;69
4.3.5.2;4.5.2 Sumoylation of RPA;71
4.3.5.3;4.5.3 Sumoylation of RAD52;71
4.3.5.4;4.5.4 Sumoylation of PCNA;73
4.3.5.5;4.5.5 Sumoylation of SGS1/BLM;75
4.3.5.6;4.5.6 Sumoylation of Thymidine DNA Glycosylase in Base Excision Repair;76
4.3.6;4.6 SUMO in the Maintenance of Telomere Function;78
4.3.7;4.7 Sumoylation in Chromosome Topology;82
4.3.7.1;4.7.1 Sumoylation of Cohesin;82
4.3.7.2;4.7.2 Sumoylation of Topoisomerase II;83
4.3.8;4.8 Conclusion;84
4.3.9;References;85
4.4;5: Regulation of Cellular Processes by SUMO: Understudied Topics;95
4.4.1;5.1 Introduction;95
4.4.2;5.2 Examples of Well-Studied SUMO-Regulated Processes;96
4.4.2.1;5.2.1 Genome Stability;96
4.4.2.2;5.2.2 Cell Cycle Regulation;96
4.4.2.3;5.2.3 Transcription;97
4.4.3;5.3 Examples of Less-Studied SUMO-Regulated Processes;97
4.4.3.1;5.3.1 RNA Editing;97
4.4.3.2;5.3.2 snoRNA;97
4.4.3.3;5.3.3 mRNA Translation;97
4.4.3.4;5.3.4 Protein Folding;98
4.4.3.5;5.3.5 Lipogenesis;99
4.4.3.6;5.3.6 Cell Morphology;99
4.4.3.7;5.3.7 Autophagy;100
4.4.4;5.4 Conclusion;101
4.4.5;References;101
4.5;6: The Molecular Interface Between the SUMO and Ubiquitin Systems;104
4.5.1;6.1 DNA Checkpoints, DNA-Repair;104
4.5.2;6.2 Key Historical Discoveries in the Field;105
4.5.3;6.3 More Recent Key Discoveries in the Field;106
4.5.4;6.4 The Identification of RNF4;106
4.5.5;6.5 Cancer, DNA Damage, and the Best Known Substrate of RNF4;108
4.5.6;6.6 Additional Substrates and Molecular Functions of RNF4;109
4.5.7;6.7 Sumoylation, Ubiquitination, Nuclear Receptors, Bile Acid Homeostasis, Cholesterol Metabolism, and the Inflammatory Response;110
4.5.8;6.8 SUMO, Ubiquitin, Acetyl, Pregnane X Receptor, and Drug Metabolism;111
4.5.9;References;113
4.6;7: SUMO and Nucleocytoplasmic Transport;116
4.6.1;7.1 Introduction;116
4.6.2;7.2 Compartment-Specific Sumoylation;119
4.6.3;7.3 Regulation of Nuclear Transport by Sumoylation;121
4.6.3.1;7.3.1 SUMO-Dependent Inhibition of Nuclear Export;121
4.6.3.2;7.3.2 SUMO-Dependent Stimulation of Nuclear Export;123
4.6.3.3;7.3.3 Sumoylation and Nuclear Import;124
4.6.4;7.4 Control of the Nuclear Transport Machinery by Sumoylation;125
4.6.5;7.5 Nucleocytoplasmic Transport of SUMO-Specific Enzymes;126
4.6.6;7.6 Conclusion;127
4.6.7;References;128
4.7;8: Sumo Modification of Ion Channels;132
4.7.1;8.1 Introduction;132
4.7.2;8.2 Extranuclear Targets of Sumoylation;134
4.7.3;8.3 Sumoylation of Ion Channels;135
4.7.3.1;8.3.1 K2P1;136
4.7.3.2;8.3.2 Kv1.5;138
4.7.3.3;8.3.3 GluR6;140
4.7.4;8.4 Ion Chanels as Probes of Sumo Modification at the Plasma Membrane;141
4.7.5;8.5 Conclusions;144
4.7.6;References;145
4.8;9: The Roles of SUMO in Metabolic Regulation;147
4.8.1;9.1 Introduction: Functions of SUMO in Metabolism;148
4.8.2;9.2 SUMO and Transcriptional Regulation of Metabolic Pathways;149
4.8.2.1;9.2.1 SUMO and Master Regulation of Lipid Biosynthesis;149
4.8.2.2;9.2.2 SUMO and Metabolic Nuclear Receptors;151
4.8.3;9.3 SUMO in Familial Partial Lipodystrophy;151
4.8.4;9.4 Metabolic Adaptation to Cellular and Oxidative Stress;152
4.8.5;9.5 SUMO and Energy Metabolism;153
4.8.5.1;9.5.1 SUMO in Muscle Metabolism;153
4.8.5.2;9.5.2 SUMO in Insulin Synthesis and Secretion;157
4.8.5.3;9.5.3 SUMO in Glucose Transport and Metabolism;158
4.8.5.4;9.5.4 SUMO in Mitochondrial Biogenesis and Metabolic Disease;159
4.8.6;9.6 SUMO and Folate-Mediated One-Carbon Metabolism;160
4.8.7;9.7 Conclusions;163
4.8.8;References;163
5;Part II: Cell Growth Regulation;173
5.1;10: The SUMO Pathway in Mitosis;174
5.1.1;10.1 Introduction;174
5.1.2;10.2 The SUMO Pathway;175
5.1.3;10.3 Outcomes of SUMO Modification;175
5.1.4;10.4 The Role of SUMO in Mitotic Chromosome Structure;177
5.1.5;10.5 SUMO and Centromere/Kinetochore Organization;179
5.1.6;10.6 SUMO and Cytokinesis;182
5.1.7;10.7 Conclusions and Perspectives;183
5.1.8;References;184
5.2;11: Wrestling with Chromosomes: The Roles of SUMO During Meiosis;188
5.2.1;11.1 Introduction;188
5.2.2;11.2 Sumoylation;189
5.2.2.1;11.2.1 Sumoylation in Meiosis: A Phenotypic Survey;189
5.2.2.2;11.2.2 Targets of Sumoylation in Meiosis;191
5.2.3;11.3 Centromeric Heterochromatin and Sumoylation;192
5.2.4;11.4 Centromeric Coupling;193
5.2.5;11.5 SUMO-Mediated Regulation of SC Dynamics;194
5.2.5.1;11.5.1 ZIP1 and ZIP3: A SUMO Connection;194
5.2.6;11.6 Meiotic DSB Repair/Recombination;196
5.2.7;11.7 Conclusions;197
5.2.8;References;197
5.3;12: Sumoylation in Development and Differentiation;200
5.3.1;12.1 Introduction;201
5.3.2;12.2 The Reproductive System;202
5.3.2.1;12.2.1 Vuval Morphogenesis;202
5.3.2.2;12.2.2 Sperm Differentiation;202
5.3.2.3;12.2.3 Oocyte Maturation;204
5.3.3;12.3 Embryonic Development;205
5.3.4;12.4 Stem Cells;205
5.3.4.1;12.4.1 Embryonic Stem Cells;205
5.3.4.2;12.4.2 Post-natal Stem Cells;207
5.3.5;12.5 Tissue and Cellular Differentiation;208
5.3.5.1;12.5.1 Epithelial Tissue;208
5.3.5.2;12.5.2 Myocytes;209
5.3.5.3;12.5.3 Neuronal Cells;211
5.3.5.4;12.5.4 Hematopoietic Cells;212
5.3.6;12.6 Conclusions;213
5.3.7;References;213
5.4;13: The Role of Sumoylation in Senescence;218
5.4.1;13.1 Introduction;218
5.4.2;13.2 Sumoylation and Senescence;221
5.4.3;13.3 Cellular Senescence and P53 Sumoylation;221
5.4.4;13.4 Sumoylation, Senescence and the Retinoblastoma Protein;223
5.4.5;13.5 Role of PML and Sumoylation in the Regulation of Senescence;224
5.4.6;13.6 Telomere Maintenance and SUMO;225
5.4.7;13.7 Conclusions;226
5.4.8;References;226
5.5;14: Regulation of Plant Cellular and Organismal Development by SUMO;230
5.5.1;14.1 Introduction;231
5.5.2;14.2 Phenotypes Associated with SUMO Pathway Mutants;232
5.5.3;14.3 SUMO Functions in Physiological Adaptation and Stress Responses;234
5.5.4;14.4 Flowering Time;237
5.5.5;14.5 Hormone Signaling;237
5.5.6;14.6 Sumo and Light Signaling;240
5.5.7;14.7 Roles in Cell Division, Meristem Proliferation, Meiosis, and Gametophyte Development;242
5.5.8;14.8 SUMO and Chromosome Functions;243
5.5.9;References;246
5.6;15: SUMO in Drosophila Development;251
5.6.1;15.1 The SUMO Pathway;251
5.6.2;15.2 SUMO and Drosophila Development;253
5.6.2.1;15.2.1 Regulation of Signal Transduction by SUMO;253
5.6.2.1.1;15.2.1.1 Ras/MAPK Signaling;253
5.6.2.1.2;15.2.1.2 Dpp Signaling;254
5.6.2.1.3;15.2.1.3 Jun N-Terminal Kinase Signaling;254
5.6.2.2;15.2.2 Regulation by SUMO of Spatially Restricted Sequence-Specific Transcription Factors;255
5.6.2.2.1;15.2.2.1 Bicoid;255
5.6.2.2.2;15.2.2.2 Spalt;255
5.6.2.3;15.2.3 Regulation by SUMO of Co-repressors;256
5.6.2.3.1;15.2.3.1 The Polycomb Group Protein Scm;256
5.6.2.3.2;15.2.3.2 Groucho;257
5.6.3;15.3 Conclusion;257
5.6.4;References;257
6;Part III: Diseases;260
6.1;16: Sumoylation: Implications for Neurodegenerative Diseases;261
6.1.1;16.1 Introduction;262
6.1.2;16.2 Parkinson’s Disease;262
6.1.3;16.3 Alzheimer’s Disease;265
6.1.4;16.4 Polyglutamine Diseases;266
6.1.4.1;16.4.1 Huntington’s Disease;267
6.1.4.2;16.4.2 Denatorubro-Pallidoluysian Atrophy;267
6.1.4.3;16.4.3 Spinobulbar Muscular Atrophy;268
6.1.4.4;16.4.4 Spinocerebellar Ataxias;268
6.1.4.5;16.4.5 Neuronal Intranuclear Inclusion Disease;269
6.1.5;16.5 Cellular Stress;270
6.1.6;16.6 Amyotrophic Lateral Sclerosis;271
6.1.7;16.7 Ischemia;271
6.1.8;16.8 Sumoylation as a Potential Drug Target;273
6.1.9;16.9 Conclusions and Perspectives;275
6.1.10;References;277
6.2;17: Sumoylation and Its Contribution to Cancer;282
6.2.1;17.1 Introduction;282
6.2.2;17.2 Upstream Signals Regulating SUMO-Conjugation System in Cancer;283
6.2.3;17.3 Regulation of SUMO E2 Conjugating Enzyme, UBC9, in Cancer;285
6.2.4;17.4 Involvement of SUMO E3 Ligases in Cancer;286
6.2.5;17.5 Involvement of SUMO-Specific Proteases in Cancer;286
6.2.6;17.6 Regulation of Sumoylation at the Substrate Level and Implications in Cancer;287
6.2.7;17.7 SUMO Modification of Oncogenes and Tumor Suppressors;287
6.2.8;17.8 Conclusions;292
6.2.9;References;292
6.3;18: Sumoylation Modulates the Susceptibility to Type 1 Diabetes;298
6.3.1;18.1 Introduction;299
6.3.2;18.2 Characterization of SUMO4 in T1D Susceptibility;300
6.3.3;18.3 Genetic Heterogeneity for SUMO4 in the European Caucasians;303
6.3.4;18.4 Validation of SUMO4 as a Novel T1D Susceptibility Gene;303
6.3.5;18.5 The Effect of M55V Supports SUMO4 in T1D Susceptibility;304
6.3.6;18.6 Stress-Dependent SUMO4 Functionality;306
6.3.7;18.7 SUMO4 Acts as a Negative Regulator for the NF?B Signaling Pathway;307
6.3.8;18.8 SUMO4 Regulates Cytokine-Initiated JAK/STAT Signalings;309
6.3.9;18.9 SUMO4 Modulates AP-1 Tanscriptional Activity;310
6.3.10;18.10 SUMO4 Wrestles with Intracellular Stress;311
6.3.11;18.11 Conclusions;313
6.3.12;References;313
6.4;19: Sumoylation in Craniofacial Disorders;322
6.4.1;19.1 Key Role for Sumo in Development;323
6.4.2;19.2 Sumo 1 Haploinsufficiency Causes Cleft Lip and/or Palate;323
6.4.3;19.3 Sumoylation Regulates Craniofacial Developmental Genes;325
6.4.4;19.4 Sumo in Developmental Pathways and Syndromes;328
6.4.5;19.5 Sumo, Stress, and CL/P;330
6.4.6;19.6 Conclusions;330
6.4.7;References;331
6.5;20: Coordination of Cellular Localization-Dependent Effects of Sumoylation in Regulating Cardiovascular and Neurological Diseases;335
6.5.1;20.1 Introduction;336
6.5.2;20.2 Sumoylation in the Nucleus Regulates Endothelial Dysfunction and Atherosclerosis;337
6.5.2.1;20.2.1 Steady Laminar Flow vs. Disturbed Flow;337
6.5.2.2;20.2.2 Nuclear ERK5 Sumoylation and EC Dysfunction;338
6.5.2.3;20.2.3 Sumoylation Mediated p53 Nuclear Export Leads to EC Apoptosis;340
6.5.2.4;20.2.4 Nuclear Export of De-sumoylation Enzyme SENP2 and Its Effects on Nuclear ERK5 and p53;340
6.5.2.5;20.2.5 D-Flow and DNA Methylation in the Nucleus;343
6.5.2.6;20.2.6 Nuclear Inducible Camp Early Repressor (ICER) Is Regulated by ERK5-Sumoylation in Heart;346
6.5.3;20.3 Sumoylation of Potassium Channels at the Plasma Membrane;347
6.5.4;20.4 Sumoylation of Mitochondrial Proteins;349
6.5.4.1;20.4.1 Overview of Mitochondrial Fission and Fusion;349
6.5.4.2;20.4.2 The Roles of DRP1 Sumoylation in Mitochondrial Fission; SUMO1 vs SUMO2/3;349
6.5.5;20.5 Conclusions;351
6.5.6;References;351
6.6;21: Viral Interplay with the Host Sumoylation System;357
6.6.1;21.1 Introduction;357
6.6.2;21.2 DNA Viruses;358
6.6.2.1;21.2.1 Parvoviruses;358
6.6.2.2;21.2.2 Papillomaviruses;361
6.6.2.3;21.2.3 Adenoviruses;363
6.6.2.4;21.2.4 Herpesviruses;366
6.6.2.4.1;21.2.4.1 Herpes Simplex Virus;366
6.6.2.4.2;21.2.4.2 Varicella-Zoster Virus;367
6.6.2.4.3;21.2.4.3 Cytomegalovirus;367
6.6.2.4.4;21.2.4.4 Human Herpesvirus 6;369
6.6.2.4.5;21.2.4.5 Epstein-Barr Virus;370
6.6.2.4.6;21.2.4.6 Kaposi’s Sarcoma-Associated Herpes Virus;372
6.6.2.5;21.2.5 Poxviruses;374
6.6.3;21.3 RNA Viruses;374
6.6.3.1;21.3.1 Retrovirus;374
6.6.3.2;21.3.2 Orthomyxovirus;375
6.6.3.3;21.3.3 Filovirus;376
6.6.3.4;21.3.4 Paramyxovirus;376
6.6.3.5;21.3.5 Rhabdovirus;377
6.6.3.6;21.3.6 Coronavirus;377
6.6.3.7;21.3.7 Flavivirus;377
6.6.3.8;21.3.8 Picornavirus;377
6.6.3.9;21.3.9 Reovirus;378
6.6.3.10;21.3.10 Deltavirus;378
6.6.4;21.4 Conclusion;378
6.6.5;References;379
6.7;22: Sumoylation as an Integral Mechanism in Bacterial Infection and Disease Progression;387
6.7.1;22.1 Introduction;388
6.7.1.1;22.1.1 Host-Microbe Interactions;388
6.7.1.2;22.1.2 Sumoylation Regulates Cellular Processes;389
6.7.2;22.2 Bacterial Pathogens and Sumoylation;391
6.7.2.1;22.2.1 Strategies Employed by Bacteria to Intercept/Exploit Host Sumoylation;391
6.7.2.1.1;22.2.1.1 Mimicry of Sumoylation Machinery Components;392
6.7.2.1.2;22.2.1.2 Alteration of Sumoylation of Specific Proteins;393
6.7.2.1.3;22.2.1.3 Sumoylation of Virulence Factors and Functional Alterations;394
6.7.2.1.4;22.2.1.4 Global Modulation of Host Sumoylation Levels;395
6.7.2.1.5;22.2.1.5 Listeria monocytogenes;395
6.7.2.1.6;22.2.1.6 Shigella flexneri;397
6.7.2.1.7;22.2.1.7 Salmonella enterica serovar Typhimurium;397
6.7.3;22.3 Host Cellular Processes Affected by Perturbation of Sumoylation;399
6.7.3.1;22.3.1 Sumoylation and Transcriptional Regulation;399
6.7.3.2;22.3.2 Sumoylation and Cellular Inflammatory Cascade in Bacterial Infection;399
6.7.3.3;22.3.3 Sumoylation and Modulation of Cellular Metabolism by Bacteria;401
6.7.4;22.4 Conclusions;402
6.7.5;References;402
7;Index;407




