Buch, Deutsch, 320 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 511 g
Beiträge zum Studienbeginn von Matroids Matheplanet
Buch, Deutsch, 320 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 511 g
ISBN: 978-3-8274-2852-3
Verlag: Spektrum Akademischer Verlag
Dies ist kein Lehrbuch! Dieses Buch ist ein Schatzkästlein mit erklärenden und motivierenden Beiträgen, die genau zu den Vorlesungen im ersten Jahr des Mathe-Studiums passen.
Als Mathematik-Interessierter wirst du das Buch gerne zur Hand nehmen, egal welchen Studiengang du belegst.
Die Autoren geben dir durchdachte und gezielte Hilfestellung bei vielen üblichen Anfängerschwierigkeiten. Sie machen anschaulich und anwendbar, was in der Vorlesung immer zu kurz kommt. Und sie wissen genau, wo Probleme liegen können, denn sie waren selbst Anfänger und erinnern sich gut daran. Dieses Buch spricht mit dir, wie ein fortgeschrittener Student, der dir die Dinge gut erklären kann: "Mathematisch für Anfänger!"
Alle Artikel wurden zuerst für die Internet-Seite 'Matroids Matheplanet' geschrieben und sind für diese Ausgabe noch einmal sorgfältig durchgesehen und inhaltlich und didaktisch verbessert worden.
Wenn du dich auf deinem Weg durch die Mathematik von diesem Buch begleiten lässt, wirst du die Tipps und Tricks der Beweistechniken, Linearen Algebra und Analysis nicht verpassen.
Unser Ziel ist, dass du am Ende sagen wirst: Ja, ich habe es verstanden, ich hatte Erfolg, und ich habe Spaß daran gefunden!
Stimmen auf amazon.de zur 1.Auflage:
„So macht Mathe einfach Spaß. […] Es ist eines der besten Bücher für Personen, die beginnen, sich mit der Mathematik ernsthaft zu beschäftigen.“ Klemens Reusch „mtb22“
„Ein ‚Must-have‘ in jeder Mathesammlung.“ Gerhard Guggi
Zielgruppe
Upper undergraduate
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematik Allgemein Grundlagen der Mathematik
- Sozialwissenschaften Pädagogik Lehrerausbildung, Unterricht & Didaktik Allgemeine Didaktik Naturwissenschaften, Mathematik (Unterricht & Didaktik)
- Mathematik | Informatik Mathematik Mathematik Allgemein Populäre Darstellungen der Mathematik
Weitere Infos & Material
I Beweise und Beweistechnik.- 1 Was ist Mathematik?- 1.1 Ausgewählte Antworten. 1.2 Zusammenfassung. 1.3 Empfehlenswerte Bücher.- 2 Mathematisch für Anfänger.- 2.1 Lektion 1: Vom Wort zum Satz. 2.2 Lektion 2: Universelles Vokabular. 2.3 Lektion 3: Prädikate. 2.4 Lektion 4: Konjunktionen (Überleitungen). 2.5 Lektion 5: Schlussworte, Schlusspunkte.- 3 Beweise, immer nur Beweise.- 3.1 Beweisen lernen. 3.2 Der Zweck der Übungen. 3.3 Unterscheide wahr und falsch. 3.4 Einige Gebote und Verbote. 3.5 Mathematik ist Struktur. 3.6 Mathematik für und durch die Praxis. 3.7 Und wie lernt man beweisen?- 4 Die Beweisverfahren.- 4.1 Der direkte Beweis. 4.2 Der indirekte Beweis. 4.3 Der konstruktive Beweis.- 5 Das Prinzip der vollständigen Induktion.- 5.1 Wer hat die vollständige Induktion erfunden? 5.2 Ist Induktion nur für Folgen und Reihen? 5.3 Wie funktioniert die vollständige Induktion? 5.4 Kann man sich auf die vollständige Induktion verlassen? 5.5 Kann man wirklich den Induktionsschluss unendlich oft anwenden? 5.6 Kann man Induktion immer anwenden? 5.7 Induktion ist nicht geeignet, wenn ...5.8 Was ist schwer an der vollständigen Induktion? 5.9 Anwendungen der vollständigen Induktion. 5.10 Zum Schluss.- 6 Der unendliche Abstieg.- 6.1 Einführung. 6.2 Wurzel von 2 ist irrational. 6.3 Inkommensurable Längen im Fünfeck.- 7 Über das Auswahlaxiom.- 7.1 Das Auswahlproblem. 7.2 Das Auswahlaxiom. 7.3 Wohlordnung. 7.4 Lemma von Zorn. 7.5 Äquivalenz der Aussagen.- II Lineare Algebra.- 8 Lineare Algebra für absolute Anfänger.- 8.1 Einführung. 8.2 Vektorräume. 8.3 Untervektorräume. 8.4 Lineare Unabhängigkeit. 8.5 Schluss.- 9 Lineare Gleichungssysteme.- 9.1 Einführung. 9.2 Lineare Gleichungssysteme: Was ist das? 9.3 Lösung linearer Gleichungssysteme 9.4 Rangbestimmung einer Matrix.- 10 Lineare Abbildungen und ihre darstellenden Matrizen.- 10.1 Einführung. 10.2 Lineare Abbildungen. 10.3 Bild und Kern einer linearen Abbildung. 10.4 Dimensionsformel und weitere Eigenschaften. 10.5 Lineare Abbildung am Beispiel. 10.6 Darstellungen linearer Abbildungen am Beispiel. 10.7 Darstellungsmatrizen linearer Abbildungen. 10.8 Berechnung einer Darstellungsmatrix am Beispiel. 10.9 Abbilden mit einer darstellenden Matrix. 10.10 Beispiel zum Basiswechsel.- 11 Determinante: Was ist das?- 11.1 Einführung. 11.2 Determinante: Was ist das? 11.3 Spezialfälle. 11.4 Der allgemeine Fall. 11.5 Praktische Berechnung von Determinanten.- 12 Diagonalisierbarkeit: Was ist das?- 12.1 Einführung. 12.2 Diagonalisierbarkeit: Was ist das? 12.3 Eigenwerte und Eigenvektoren. 12.4 Eigenwerte und Eigenvektoren am Beispiel. 12.5 Diagonalisierbarkeitskriterien. 12.6 Eine praktische Anwendung.- III Analysis.-13 Die Standardlösungsverfahren für Polynomgleichungen.- 14 Die Beziehungen von Sinus und Cosinus.- 15 Doppelintegrale.- 16 Kurvenintegrale.- 17 Oberflächenintegrale.- 18 Differentialgleichungen.- 19 Die Sätze von Heine-Borel, Bolzano-Weierstraß und Montel.- IV Ausblick auf Weiteres.- 20 Eulers Berechnungen der Zetafunktion.- 21 Die Riemannsche Vermutung.- 22 Das Kugelwunder.- 23 Geometrie in der Teetasse.- Literaturverzeichnis




