Wolfhard / Glassman / Green | Heterogeneous Combustion | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band Volume 15, 782 Seiten, Web PDF

Reihe: Progress in Astronautics and Rocketry

Wolfhard / Glassman / Green Heterogeneous Combustion

A Selection of Technical Papers Based Mainly on the American Institute of Aeronautics and Astronautics Heterogeneous Combustion Conference Held at Palm Beach, Florida, December 11-13, 1963
1. Auflage 2014
ISBN: 978-1-4832-7683-0
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

A Selection of Technical Papers Based Mainly on the American Institute of Aeronautics and Astronautics Heterogeneous Combustion Conference Held at Palm Beach, Florida, December 11-13, 1963

E-Book, Englisch, Band Volume 15, 782 Seiten, Web PDF

Reihe: Progress in Astronautics and Rocketry

ISBN: 978-1-4832-7683-0
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



Progress in Astronautics and Aeronautics-Volume 15: Heterogeneous Combustion focuses on the processes, reactions, methodologies, and techniques involved in heterogeneous combustion. The selection first offers information on the techniques for the study of combustion of beryllium and aluminum particles, study of quenched aluminum particle combustion, and spectroscopic investigation of metal combustion. Discussions focus on the combustion of metal particles in a hot oxidizing atmosphere, experimental apparatus and procedure, selected examples of residue observations, ignition of beryllium, and photographic study of particle combustion. The text then takes a look at the analytical developments, experimental observations in oxygen atmospheres, and experimental observations in carbon dioxide atmospheres of vapor-phase diffusion flames in the combustion of magnesium and aluminum. The publication ponders on the combustion of elemental boron with fluorine, combustion of pyrolytic boron nitride, characteristics of diborane flames, oxidation of diethyldiborane, and reaction of pentaborane and hydrazine and structure of the adduct. The selection is a dependable reference for readers interested in heterogeneous combustion.

Wolfhard / Glassman / Green Heterogeneous Combustion jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;Heterogeneous Combustion;6
3;Copyright Page;7
4;Table of Contents;14
5;THE PROPELLANTS AND COMBUSTION COMMITTEE OF THE AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS;8
6;PREFACE;10
7;PART I: COMBUSTION AND IGNITIONOF METALS;18
7.1;CHAPTER 1. TECHNIQUES FOR THE STUDY OF COMBUSTION OF BERYLLIUM AND ALUMINUM PARTICLES;20
7.1.1;Abstract;20
7.1.2;Introduction;21
7.1.3;1. Ignition of Beryllium;21
7.1.4;2. Photographic Study of Particle Combustion;23
7.1.5;References;25
7.2;CHAPTER 2. STUDY OF QUENCHED ALUMINUM PARTICLE COMBUSTION;34
7.2.1;Abstract;34
7.2.2;Introduction;34
7.2.3;Experimental;35
7.2.4;Selected Examples of Residue Observations;38
7.2.5;Discussion;40
7.2.6;References;45
7.3;CHAPTER 3. SPECTROSCOPIC INVESTIGATION OF METAL COMBUSTION;58
7.3.1;Abstract;58
7.3.2;Introduction;59
7.3.3;Experimental Apparatus and Procedure;59
7.3.4;Experimental Results;60
7.3.5;Discussion;65
7.3.6;Combustion of Metal ParticlesIn a Hot Oxidizing Atmosphere;66
7.3.7;Conclusions;77
7.3.8;References;77
7.4;CHAPTER 4. VAPOR-PHASE DIFFUSION FLAMES IN THE COMBUSTION OF MAGNESIUM AND ALUMINUM: I. ANALYTICAL DEVELOPMENTS;92
7.4.1;Abstract;92
7.4.2;Nomenclatur;93
7.4.3;Introduction;94
7.4.4;The Model;95
7.4.5;Governing Equations;97
7.4.6;Solution of the Full Governing Equations;113
7.4.7;Summary;122
7.4.8;References;123
7.5;CHAPTER 5. VAPOR-PHASE DIFFUSION FLAMES IN THE COMBUSTION OF MAGNESIUM AND ALUMINUM : II. EXPERIMENTAL OBSERVATIONS IN OXYGEN ATMOSPHERES;134
7.5.1;Abstract;134
7.5.2;Nomenclature;135
7.5.3;Introduction;135
7.5.4;Experimental Apparatus and Procedure;136
7.5.5;Experimental Results for Aluminum;151
7.5.6;Conclusions;164
7.5.7;References;165
7.6;CHAPTER 6. VAPOR-PHASE DIFFUSION FLAMES IN THE COMBUSTION OF MAGNESIUM AND ALUMINUM: III. EXPERIMENTAL OBSERVATIONS IN CARBON DIOXIDE ATMOSPHERES;176
7.6.1;Abstract;176
7.6.2;Introduction;177
7.6.3;Experimental Apparatus and Procedure;177
7.6.4;Experimental Results for Magnesium;186
7.6.5;Conclusions;189
7.6.6;References;190
7.7;CHAPTER 7. ANALYSIS OF A DILUTE DIFFUSION FLAME MAINTAINED BY HETEROGENEOUS REACTION;194
7.7.1;Abstract;194
7.7.2;Nomenclature;195
7.7.3;Introduction;196
7.7.4;Simplifying Assumptions;197
7.7.5;Analysis;199
7.7.6;Discussion;204
7.7.7;References;213
7.8;CHAPTER 8. COMBUSTION OF ELEMENTAL BORON WITH FLUORINE;220
7.8.1;Abstract;220
7.8.2;Introduction;221
7.8.3;Microbalance Experiments;222
7.8.4;Mass Spectrometer Experiments;227
7.8.5;Summary;229
7.8.6;References;231
7.9;CHAPTER 9. OXIDATION OF GRAPHITE, MOLYBDENUM, AND TUNGSTENAT 1000°TO 1600°C;244
7.9.1;Abstract;244
7.9.2;Introduction;244
7.9.3;Theoretical;245
7.9.4;Experimental;249
7.9.5;Results;250
7.9.6;Discussion;255
7.9.7;Conclusions;257
7.9.8;References;258
7.10;CHAPTER 10. COMBUSTION OF PYROLYTIC BORON NITRIDE;268
7.10.1;Abstract;268
7.10.2;Nomenclature;268
7.10.3;Introduction;269
7.10.4;Results;279
7.10.5;References;283
7.11;CHAPTER 11. COMBUSTION AND DISINTEGRATION OF ZIRCONIUM HYDRIDE-URANIUM FUEL RODS DURING ATMOSPHERIC RE-ENTRY;296
7.11.1;Abstract;296
7.11.2;Introduction;296
7.11.3;Experimental Program;297
7.11.4;Conclusions;305
7.11.5;References;306
8;PART II: HIGH-ENERGYPROPELLANT COMBUSTION;326
8.1;CHAPTER 12. A BRIEF REVIEW ON THE COMBUSTION OF BORON HYDRIDES;328
8.1.1;Abstract;328
8.1.2;References;333
8.2;13. CHARACTERISTICS OF DIBORANE FLAMES;344
8.2.1;Abstract;344
8.2.2;Introduction;345
8.2.3;Experimental;345
8.2.4;Appearance of Flame;346
8.2.5;Burning Velocities;347
8.2.6;Spectra of Flames;348
8.2.7;Discussion;349
8.2.8;References;353
8.3;CHAPTER 14. MECHANISM AND CHEMICAL INHIBITION OFTHE DIBORANE-OXYGEN REACTION;362
8.3.1;Abstract;362
8.3.2;Introduction;362
8.3.3;Apparatus;363
8.3.4;Pyrolysis of Diborane;366
8.3.5;Shock Tube Inhibition Studies;370
8.3.6;Inhibition of Diborane-Air Flames;373
8.3.7;Conclusions;374
8.3.8;References;377
8.4;CHAPTER 15. OXIDATION OF DIETHYLDIBORANE;392
8.4.1;Abstract;392
8.4.2;Introduction;392
8.4.3;Materials and Experimental Procedures;393
8.4.4;Experimental Results;395
8.4.5;Discussion;398
8.4.6;References;399
8.5;CHAPTER 16. REACTION OF PENTABORANE AND HYDRAZINE AND THE STRUCTURE OP THE ADDUCT;408
8.5.1;Abstract;408
8.5.2;Introduction;408
8.5.3;Experimental Procedure;409
8.5.4;Thermal Decomposition of the Insoluble Adduct;412
8.5.5;References;413
8.6;CHAPTER 17. MECHANISM OF PYROLYSIS OF ALUMINUM ALKYLS;420
8.6.1;Abstract;420
8.6.2;1. Introduction;420
8.6.3;2. Pyrolysis of Aluminum Alky Is: Mechanisms;424
8.6.4;3. Pyrolysis of TPA;426
8.6.5;4. Pyrolysis of TEA;428
8.6.6;5. pyrolysis of TMA;432
8.6.7;6. Conclusion;433
8.6.8;References;433
8.7;CHAPTER 18. INHIBITION OF AFTERBURNING BY METAL COMPOUNDS;436
8.7.1;Abstract;436
8.7.2;Introduction;436
8.7.3;Characteristics of Afterburning;437
8.7.4;Inhibition Experiments;439
8.7.5;Discussion;442
8.7.6;References;449
9;PART Ill: EFFECT OF AERODYNAMICSON HETEROGENEOUS COMBUSTION;466
9.1;CHAPTER 19. INTRODUCTORY CONSIDERATIONS ON HYBRID ROCKET COMBUSTION;468
9.1.1;Abstract;468
9.1.2;Nomenclature;468
9.1.3;Introduction;470
9.1.4;General Considerations;471
9.1.5;Previous Analyses of Hybrid Combustion;472
9.1.6;Extension of Existing Theory;483
9.1.7;References;487
9.2;CHAPTER 20. FUNDAMENTALS OF HYBRIDBOUNDARY-LAYER COMBUSTION;502
9.2.1;Abstract;502
9.2.2;1. Introduction;502
9.2.3;2. The Hybrid Regression Rate Equation;504
9.2.4;3. The Flame Height Equation;505
9.2.5;4. Effects of Wall Mass Injection on Heat Transferand Boundary-Layer Growth;507
9.2.6;5. Simplified Regression Rate Equationfor Nonradiative Systems;508
9.2.7;6. Transient Behavior Caused by Thermal Lagin the Fuel Grain;509
9.2.8;7. Two-Dimensional Experimental Investigations;513
9.2.9;8. Application of the Regression Rate Theoryto a Cylindrical Grain;517
9.2.10;9. Experimental Investigation in a Tube Burner;520
9.2.11;10. Concluding Remarks;523
9.2.12;Appendix A: Determination of the Flame Positionin the Hybrid Boundary Layer;526
9.2.13;Appendix B: Thermal Lag in the Grain;527
9.2.14;Appendix C: Calculation of the Enthalpy Difference Between the Hybrid Flame and the Wall;529
9.2.15;References;531
9.3;CHAPTER 21. COMBUSTION DURING PERPENDICULAR FLOW;540
9.3.1;Abstract;540
9.3.2;Introduction;541
9.3.3;Experimental;545
9.3.4;Vapor-Vapor;546
9.3.5;Vapor-Slab;551
9.3.6;Spray (Vapor)-Grain;553
9.3.7;Discussion;557
9.3.8;References;561
9.4;CHAPTER 22. RESEARCH IN HYBRID COMBUSTION;576
9.4.1;Abstract;576
9.4.2;Introduction and Objectives;576
9.4.3;Experimental;577
9.4.4;Results;577
9.4.5;Discussion;580
9.4.6;Summary and Conclusions;586
9.4.7;References;586
9.5;CHAPTER 23. A POROUS PLUG BURNER TECHNIQUE FOR THE STUDY OF COMPOSITESOLID PROPELLANT DEFLAGRATION ON A FUNDAMENTAL LEVEL ANDITS APPLICATION TO HYBRID ROCKET PROPULSION;600
9.5.1;Abstract;600
9.5.2;Background and Introduction;601
9.5.3;Experimental Program and Results;604
9.5.4;Conclusions;615
9.5.5;References;617
9.6;CHAPTER 24. PRODUCTION OF TRACE SPECIES IN BOUNDARY LAYERS;626
9.6.1;Abstract;626
9.6.2;I. Introduction;626
9.6.3;II. Governing Differential Equations;627
9.6.4;III. Transformation of Variables;628
9.6.5;IV. Mathematical Form: Boundary Conditions;629
9.6.6;V. Rigorous Properties of the Solution;631
9.6.7;VI. The Asymptotic Solution;632
9.6.8;VII. Approximate Methods of Solution;634
9.6.9;VIII. Total Flow Rate of a Trace Species;635
9.6.10;IX. Extension to Systems in which the Production Rates Depend Upon the Concentrations of the Trace Species;637
9.6.11;X. Calculation of Production Rates for Representative Basic Flows;638
9.6.12;References;645
9.7;CHAPTER 25. LAMINAR BOUNDARY -LAYER WEDGE FLOWS WITH EVAPORATION AND COMBUSTION;660
9.7.1;Abstract;660
9.7.2;Nomenclature;661
9.7.3;Introduction;662
9.7.4;Theoretical Model;663
9.7.5;Boundary-Layer Equations;664
9.7.6;Results;669
9.7.7;References;673
10;PART IV: CONDENSATION;682
10.1;CHAPTER 26. HOMOGENEOUS NUCLEATION IN CONDENSATION;684
10.1.1;Abstract;684
10.1.2;References;690
10.2;CHAPTER 27. HOMOGENEOUS NUCLEATION FROM SIMPLEAND COMPLEX SYSTEMS;694
10.2.1;Abstract;694
10.2.2;Introduction;695
10.2.3;Simple Nucleation;696
10.2.4;Complex Systems;702
10.2.5;Discussion;710
10.2.6;References;711
10.3;CHAPTER 28. CONDENSATION PHENOMENA. IN NOZZLES;718
10.3.1;Abstract;718
10.3.2;Nomenclature;718
10.3.3;Introduction;719
10.3.4;Properties of Nozzle Flows;721
10.3.5;Classification of Condensation Processes;727
10.3.6;Equations of Motion;730
10.3.7;Experimental Methods;733
10.3.8;References;734
10.4;CHAPTER 29. WATER VAPOR CONDENSATION AS AN EXPLANATION FOR THE GREAT APPARENT RADIANCE OF SUN-LIT HIGH-ALTITUDE ROCKET EXHAUST PLUMES;742
10.4.1;Abstract;742
10.4.2;Introduction;742
10.4.3;Discussion;743
10.4.4;Concluding Remarks;746
10.4.5;References;746
10.5;CHAPTER 30. EXPERIMENTAL METHODS FOR THE STUDY OF NUCLEATION AND CONDENSATION;756
10.5.1;Abstract;756
10.5.2;Introduction;756
10.5.3;Mayer's Theory of Condensation;762
10.5.4;Experimental Methods;767
10.5.5;Observations with Expansion Nozzles;772
10.5.6;Time Lag in Nucleation;772
10.5.7;Foreign Nucleation;773
10.5.8;References;774
11;CONTRIBUTORS TO VOLUME 15;780



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.