Wu / Tian | Nonparametric Models for Longitudinal Data | Buch | 978-1-4665-1600-7 | sack.de

Buch, Englisch, 582 Seiten, Format (B × H): 161 mm x 241 mm, Gewicht: 1019 g

Reihe: Chapman & Hall/CRC Monographs on Statistics and Applied Probability

Wu / Tian

Nonparametric Models for Longitudinal Data

With Implementation in R
1. Auflage 2018
ISBN: 978-1-4665-1600-7
Verlag: Taylor & Francis Inc

With Implementation in R

Buch, Englisch, 582 Seiten, Format (B × H): 161 mm x 241 mm, Gewicht: 1019 g

Reihe: Chapman & Hall/CRC Monographs on Statistics and Applied Probability

ISBN: 978-1-4665-1600-7
Verlag: Taylor & Francis Inc


Nonparametric Models for Longitudinal Data with Implementations in R presents a comprehensive summary of major advances in nonparametric models and smoothing methods with longitudinal data. It covers methods, theories, and applications that are particularly useful for biomedical studies in the era of big data and precision medicine. It also provides flexible tools to describe the temporal trends, covariate effects and correlation structures of repeated measurements in longitudinal data.

This book is intended for graduate students in statistics, data scientists and statisticians in biomedical sciences and public health. As experts in this area, the authors present extensive materials that are balanced between theoretical and practical topics. The statistical applications in real-life examples lead into meaningful interpretations and inferences.

Features:

• Provides an overview of parametric and semiparametric methods
• Shows smoothing methods for unstructured nonparametric models
• Covers structured nonparametric models with time-varying coefficients
• Discusses nonparametric shared-parameter and mixed-effects models
• Presents nonparametric models for conditional distributions and functionals
• Illustrates implementations using R software packages
• Includes datasets and code in the authors’ website
• Contains asymptotic results and theoretical derivations

Wu / Tian Nonparametric Models for Longitudinal Data jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Overview of Longitudinal Analysis. Parametric and Semiparametric Methods. Nonparametric Models for Conditional-Means. Nonparametric Models with Missing. Functional Linear Models. Nonparametric Joint-Models with Survival Data. Methods for Time-Dependent and Outcome-Adaptive Covariate. Nonparametric Models for Distribution Functions. Structural Nonparametric Methods for Quantile Regression. Appendices.


Both authors are mathematical statisticians at the National Institutes of Health (NIH) and have published extensively in statistical and biomedical journals.

Colin O. Wu earned his Ph.D. in statistics from the University of California, Berkeley (1990), and is also Adjunct Professor at the Georgetown University School of Medicine. He served as Associate Editor for Biometrics and Statistics in Medicine, and reviewer for National Science Foundation, NIH, and the U.S. Department of Veterans Affairs.

Xin Tian earned her Ph.D. in statistics from Rutgers, the State University of New Jersey (2003). She has served on various NIH committees and collaborated extensively with clinical researchers.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.