Yang / Dong | Learning Path Construction in e-Learning | E-Book | www.sack.de
E-Book

E-Book, Englisch, 162 Seiten

Reihe: Lecture Notes in Educational Technology

Yang / Dong Learning Path Construction in e-Learning

What to Learn, How to Learn, and How to Improve
1. Auflage 2017
ISBN: 978-981-10-1944-9
Verlag: Springer Nature Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark

What to Learn, How to Learn, and How to Improve

E-Book, Englisch, 162 Seiten

Reihe: Lecture Notes in Educational Technology

ISBN: 978-981-10-1944-9
Verlag: Springer Nature Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book focuses on developing methods for constructing learning paths in terms of 'learning resources' (learning contents), 'learning approaches' (learning method), and 'learning quality' (learning performance) to support learning. This book defines different teaching approaches for learning activities and organizes them into a learning path which indicates the learning sequence. This book introduces how to automatically generate well-structured learning resources for different students.
Also, this book introduces a method about how to generate adaptive learning approach to learn learning resources for different students. Finally, this book introduces a method to monitor and control learning quality. The adaptive learning path expresses well-structured learning contents, using which approach to access those learning contents, and in which sequence to carry out the learning process. The learning path comes with a monitoring tool to control the learning progress, which helps to make students having a balanced development on different knowledge and abilities.
Researchers who worked in E-learning area, both education and computer sciences people.Educators who worked in educational institutes, such as Universities, Schools, etc. They would like to use or study E-learning tools/technologies/methods in their own work.And technicians who run/design educational websites will understand the appeal of this work.

Dr. Fan Yang received a Bachelor degree from Northwestern Polytechnical University in 2007, China, and PhD degree from Durham University, UK in 2013, and funded by Doctoral Fellowship. She is currently a lecturer of Academy of Equipment. Since 2009 to 2011, she was a research assistant of City University of Hong Kong. In 2011, she was a visiting student of Shanghai University. She has published 1 monograph and 19 papers. In 2010, she got the 'Best student paper award' for ICWL2010. In 2011, she was the session chair of ICWL2011. In 2015, she was the paper reviewer of KMO2015. Her research interests include E-learning, and Information System.

Yang / Dong Learning Path Construction in e-Learning jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Preface;6
2;Contents;8
3;List of Figures;12
4;List of Tables;14
5;1 Introduction;15
5.1;1.1 Overview;15
5.2;1.2 Motivation;16
5.3;1.3 Related Work;17
5.3.1;1.3.1 Student Attributes;17
5.3.2;1.3.2 Student Assessment;18
5.3.3;1.3.3 Student Grouping;19
5.3.4;1.3.4 Learning Resources Construction;20
5.3.5;1.3.5 Learning Path Generation Algorithm;21
5.3.6;1.3.6 Test Generation;21
5.4;1.4 Challenges;22
5.5;1.5 Research Objectives;24
5.6;1.6 Contributions;25
5.7;References;25
6;2 Educational Theory;28
6.1;2.1 Learning Theory;28
6.2;2.2 e-Learning;29
6.2.1;2.2.1 Types of?Learning;30
6.2.1.1;2.2.1.1 Traditional Learning;30
6.2.1.2;2.2.1.2 Web-Based Learning;30
6.2.1.3;2.2.1.3 Blended Learning;31
6.2.2;2.2.2 Types of?e-Learning;31
6.2.2.1;2.2.2.1 Traditional e-Learning System;32
6.2.2.2;2.2.2.2 Adaptive e-Learning System;32
6.2.2.3;2.2.2.3 Instructional Design System;32
6.2.2.4;2.2.2.4 Intelligent Tutoring System;33
6.2.2.5;2.2.2.5 Service-Oriented e-Learning System;34
6.3;2.3 Learning Taxonomy;34
6.3.1;2.3.1 Bloom’s Taxonomy;35
6.3.2;2.3.2 Gagne’s Taxonomy;35
6.3.3;2.3.3 SOLO Taxonomy;36
6.3.4;2.3.4 Finks Taxonomy;36
6.3.5;2.3.5 Subsection Summary;36
6.4;2.4 Learning Styles;37
6.5;2.5 Learning Modes;38
6.6;2.6 Student Assessment;38
6.7;References;40
7;3 Technical Definition and?Concepts;43
7.1;3.1 Terminologies Definition in?the Proposed Research;43
7.1.1;3.1.1 Learning Outcomes;43
7.1.2;3.1.2 Learning Resources;44
7.1.3;3.1.3 Unit of?Learning;44
7.1.4;3.1.4 Learning Activity;44
7.1.5;3.1.5 Learning Path;45
7.1.6;3.1.6 Learning Progress;46
7.2;3.2 Concepts Proposed in?the Monograph;47
7.2.1;3.2.1 Teachers’ Teaching Experience;47
7.2.2;3.2.2 Teachers’ Knowledge Discipline;47
7.2.3;3.2.3 Teachers’ Satisfaction Score;47
7.2.4;3.2.4 Importance of?a Learning Path;47
7.2.5;3.2.5 Learning Performance on?a Learning Path;48
7.2.6;3.2.6 Stability of?Learning Performance;48
7.2.7;3.2.7 Student Learning Performance;48
7.2.8;3.2.8 Student Development Balance Degree;49
7.2.9;3.2.9 State Value of?a Student Attribute;49
7.3;References;49
8;4 Fundamental Theories and?Development Tools;51
8.1;4.1 General Research Methodology;51
8.1.1;4.1.1 Qualitative Research Method [Wiki4, Schu03, Shie03];51
8.1.2;4.1.2 Quantitative Research Method [Wiki5, Schu03, Shie03];52
8.2;4.2 Math Modeling Method for?Learning Contents—Association Link Network;53
8.3;4.3 Math Modeling Method for?Improving Learning Quality—Performance Inference Algorithm;54
8.4;4.4 Data Analysis Related Method for?Experimental Verification;56
8.4.1;4.4.1 One-Way ANOVA [Chan14, Wiki1];56
8.4.2;4.4.2 Two Sample T-Test [Wiki2, Zhan14];57
8.4.3;4.4.3 Likert Scale [Wiki3];58
8.5;4.5 System Development Tools;59
8.5.1;4.5.1 Development Tools for?Learning Path System;59
8.5.2;4.5.2 Development Tools for?Learning Resources Generation;60
8.5.3;4.5.3 Tool for?Experimental Results Presentation;61
8.6;References;61
9;5 How to?Learn?;63
9.1;5.1 Introduction;63
9.2;5.2 Overview of?the Learning Path Model;65
9.3;5.3 Formal Definitions;67
9.4;References;73
10;6 What to?Learn?;75
10.1;6.1 Introduction;76
10.2;6.2 The Teacher Knowledge Model;77
10.3;6.3 Student Knowledge Model and?Personalized Learning Path;81
10.4;6.4 Student Assessment Against Learning Resources;85
10.5;References;89
11;7 How to?Improve Learning Quality?;90
11.1;7.1 Introduction;90
11.2;7.2 Mathematical Model;91
11.2.1;7.2.1 Modeling of?Student Attribute Descriptors;91
11.2.2;7.2.2 Student Progress Indicators;96
11.3;References;98
12;8 Implementation and?Results;99
12.1;8.1 Implementation for?Method for?Constructing a Fine-Grained Outcome-Based Learning Path Model;99
12.1.1;8.1.1 Instrument;99
12.1.1.1;8.1.1.1 Implementation;100
12.1.1.2;8.1.1.2 User Study;100
12.1.2;8.1.2 Participation;100
12.1.3;8.1.3 Data Analysis;100
12.1.4;8.1.4 Implementation;101
12.1.5;8.1.5 Experiment Results;106
12.1.6;8.1.6 Summary;111
12.2;8.2 Implementation for?Learning Path Construction Based on?Association Link Network;112
12.2.1;8.2.1 Instrument;112
12.2.1.1;8.2.1.1 Implementation;112
12.2.1.2;8.2.1.2 Comparison Study;112
12.2.2;8.2.2 Participation;113
12.2.3;8.2.3 Data Analysis;113
12.2.4;8.2.4 Evaluation Results and?Analysis;114
12.2.4.1;8.2.4.1 Compare the Importance of?Manually Selected and?System Recommended Learning Paths;114
12.2.4.2;8.2.4.2 Comparison of?Performance on?Two Groups of?Students;115
12.2.5;8.2.5 Summary;119
12.3;8.3 Implementation for?Fuzzy Cognitive Map Based Student Progress Indicators;120
12.3.1;8.3.1 Instrument (Questionnaires);120
12.3.2;8.3.2 Participation;120
12.3.3;8.3.3 Data Analysis;121
12.3.4;8.3.4 Evaluation;121
12.3.5;8.3.5 Summary;122
12.4;References;123
13;9 Conclusion and?Prospect;125
13.1;9.1 Introduction;125
13.2;9.2 Research Contribution;125
13.2.1;9.2.1 A Fine-Grained Outcome-Based Learning Path Model;125
13.2.2;9.2.2 Learning Path Construction Based on?Association Link Network;126
13.2.3;9.2.3 Fuzzy Cognitive Map-Based Student Learning Progress Indicators;127
13.3;9.3 Limitations and?Prospect;129
13.4;9.4 Conclusion;130
13.5;References;130
14;Appendix A;131
15;Appendix B;141
16;Appendix C;152



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.