Yang | Mastering Organizational Dynamics Using Process Mining | Buch | 978-3-031-93529-9 | www.sack.de

Buch, Englisch, 107 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 201 g

Reihe: Lecture Notes in Business Information Processing

Yang

Mastering Organizational Dynamics Using Process Mining


Erscheinungsjahr 2025
ISBN: 978-3-031-93529-9
Verlag: Springer

Buch, Englisch, 107 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 201 g

Reihe: Lecture Notes in Business Information Processing

ISBN: 978-3-031-93529-9
Verlag: Springer


This book is a revised version of the PhD dissertation written by the author at Queensland University of Technology. 

It presents research in the field of process mining, with a focus of developing data-driven methods to discover insights about human resources and their groups in an organizational business process context. It provides an overview on mining organizational models from event logs and introduces a set of novel ideas, framework, and approaches proposed to enhance the state-of-the-art. The book is suitable for researchers and practitioners in the fields of business process management and process mining.

In 2024, the PhD dissertation won the “BPM Dissertation Award”, granted to outstanding PhD theses in the field of Business Process Management.

Yang Mastering Organizational Dynamics Using Process Mining jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1 Introduction.- 1.1 Process Mining.- 1.2 Mining Organizational Models from Event Logs.- 1.3 Outlook.- 2 Framework for Organizational Model Mining.- 2.1 Preliminaries.- 2.2 Execution Context.- 2.3 Organizational Model.- 2.4 Discovering Organizational Models.- 2.5 Evaluating Organizational Models.- 2.5.1 Fitness.- 2.5.2 Precision.- 2.6 Analyzing Organizational Models.- 2.7 Discussion.- 3 Learning Execution Contexts.- 3.1 Preliminaries.- 3.2 Problem Modeling.- 3.2.1 Categorization Rules.- 3.2.2 Quality Measures for Execution Contexts.- 3.2.3 Problem Statement.- 3.3 Problem Solution.- 3.3.1 Deriving Attribute Specification.- 3.3.2 Inducing Rules via Simulated Annealing.- 3.4 Evaluation.- 3.4.1 Event Log Datasets.- 3.4.2 Experiment Setup.- 3.4.3 Evaluation against the Baselines.- 3.4.4 Evaluation between tree-based and SA-based.- 3.4.5 Summary.- 3.5 Discussion.- 4 Discovering Organizational Models.- 4.1 A Three-Phased Discovery Approach.- 4.1.1 Determining Execution Contexts.- 4.1.2 Discovering Resource Grouping.- 4.1.3 Profiling Resource Groups.- 4.2 Implementation.- 4.3 Evaluation.- 4.3.1 Experiment Setup.- 4.3.2 Model Evaluation and Comparison.- 4.3.3 Model Diagnosis.- 4.3.4 Summary.- 4.4 Discussion.- 5 Applying Organizational Models to Workforce Analytics.- 5.1 Preliminaries.- 5.2 Resource Group Work Profiles.- 5.2.1 Work Profile Indicators.- 5.2.2 Extracting and Analyzing Work Profiles.- 5.3 Case Study: One Process, Five Municipalities.- 5.3.1 Group-level Analysis.- 5.3.2 Within-Group Analysis.- 5.3.3 Summary.- 5.4 Discussion.- 6 Epilogue.- 6.1 Conclusions.- 6.2 Future Work.- References.


Jing Roy Yang is a postdoctoral research fellow at Queensland University of Technology (QUT), Australia. His research focuses on discovering knowledge from process execution data to support improved decision-making, especially knowledge about (human) resources, and process automation.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.