Yu / Faloutsos / Han | Link Mining: Models, Algorithms, and Applications | Buch | 978-1-4939-0147-0 | sack.de

Buch, Englisch, 586 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 896 g

Yu / Faloutsos / Han

Link Mining: Models, Algorithms, and Applications


2010
ISBN: 978-1-4939-0147-0
Verlag: Springer

Buch, Englisch, 586 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 896 g

ISBN: 978-1-4939-0147-0
Verlag: Springer


Wewouldliketoconveyourappreciationtoallauthorsfortheirvaluablec- tributions. WewouldalsoliketoacknowledgethatthisworkissupportedbyNSF throughgrantsIIS-0905215,IIS-0914934,andDBI-0960443. Chicago,Illinois PhilipS. Yu Urbana-Champaign,Illinois JiaweiHan Pittsburgh,Pennsylvania ChristosFaloutsos v Contents Part I Link-Based Clustering 1 Machine Learning Approaches to Link-Based Clustering. 3 Zhongfei(Mark)Zhang,BoLong,ZhenGuo,TianbingXu, andPhilipS. Yu 2 Scalable Link-Based Similarity Computation and Clustering. 45 XiaoxinYin,JiaweiHan,andPhilipS. Yu 3 Community Evolution and Change Point Detection in Time-Evolving Graphs. 73 JimengSun,SpirosPapadimitriou,PhilipS. Yu,andChristosFaloutsos Part II Graph Mining and Community Analysis 4 A Survey of Link Mining Tasks for Analyzing Noisy and Incomplete Networks. 107 GalileoMarkNamata,HossamSharara,andLiseGetoor 5 Markov Logic: A Language and Algorithms for Link Mining. 135 PedroDomingos,DanielLowd,StanleyKok,AniruddhNath,Hoifung Poon,MatthewRichardson,andParagSingla 6 Understanding Group Structures and Properties in Social Media. 163 LeiTangandHuanLiu 7 Time Sensitive Ranking with Application to Publication Search. 187 XinLi,BingLiu,andPhilipS. Yu 8 Proximity Tracking on Dynamic Bipartite Graphs: Problem De?nitions and Fast Solutions. 211 Hanghang Tong, Spiros Papadimitriou, Philip S. Yu, andChristosFaloutsos vii viii Contents 9 Discriminative Frequent Pattern-Based Graph Classi?cation. 237 HongCheng,XifengYan,andJiaweiHan Part III Link Analysis for Data Cleaning and Information Integration 10 Information Integration for Graph Databases. 265 Ee-PengLim,AixinSun,AnwitamanDatta,andKuiyuChang 11 Veracity Analysis and Object Distinction. 283 XiaoxinYin,JiaweiHan,andPhilipS. Yu Part IV Social Network Analysis 12 Dynamic Community Identi?cation.

Yu / Faloutsos / Han Link Mining: Models, Algorithms, and Applications jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Link-Based Clustering.- Machine Learning Approaches to Link-Based Clustering.- Scalable Link-Based Similarity Computation and Clustering.- Community Evolution and Change Point Detection in Time-Evolving Graphs.- Graph Mining and Community Analysis.- A Survey of Link Mining Tasks for Analyzing Noisy and Incomplete Networks.- Markov Logic: A Language and Algorithms for Link Mining.- Understanding Group Structures and Properties in Social Media.- Time Sensitive Ranking with Application to Publication Search.- Proximity Tracking on Dynamic Bipartite Graphs: Problem Definitions and Fast Solutions.- Discriminative Frequent Pattern-Based Graph Classification.- Link Analysis for Data Cleaning and Information Integration.- Information Integration for Graph Databases.- Veracity Analysis and Object Distinction.- Social Network Analysis.- Dynamic Community Identification.- Structure and Evolution of Online Social Networks.- Toward Identity Anonymization in Social Networks.- Summarization and OLAP of Information Networks.- Interactive Graph Summarization.- InfoNetOLAP: OLAP and Mining of Information Networks.- Integrating Clustering with Ranking in Heterogeneous Information Networks Analysis.- Mining Large Information Networks by Graph Summarization.- Analysis of Biological Information Networks.- Finding High-Order Correlations in High-Dimensional Biological Data.- Functional Influence-Based Approach to Identify Overlapping Modules in Biological Networks.- Gene Reachability Using Page Ranking on Gene Co-expression Networks.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.