Zeng | Medical Image Reconstruction | E-Book | sack.de
E-Book

E-Book, Englisch, 287 Seiten

Reihe: De Gruyter Textbook

Zeng Medical Image Reconstruction

From Analytical and Iterative Methods to Machine Learning
2. Auflage 2023
ISBN: 978-3-11-105570-1
Verlag: De Gruyter
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

From Analytical and Iterative Methods to Machine Learning

E-Book, Englisch, 287 Seiten

Reihe: De Gruyter Textbook

ISBN: 978-3-11-105570-1
Verlag: De Gruyter
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



This textbook introduces the essential concepts of tomography in the field of medical imaging. The medical imaging modalities include x-ray CT (computed tomography), PET (positron emission tomography), SPECT (single photon emission tomography) and MRI. In these modalities, the measurements are not in the image domain and the conversion from the measurements to the images is referred to as the image reconstruction.

The work covers various image reconstruction methods, ranging from the classic analytical inversion methods to the optimization-based iterative image reconstruction methods. As machine learning methods have lately exhibited astonishing potentials in various areas including medical imaging the author devotes one chapter to applications of machine learning in image reconstruction.

Based on college level in mathematics, physics, and engineering the textbook supports students in understanding the concepts. It is an essential reference for graduate students and engineers with electrical engineering and biomedical background due to its didactical structure and the balanced combination of methodologies and applications,

Zeng Medical Image Reconstruction jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Larry Zeng, Ph.D. (in Electrical Engineering, University of New Mexico), Professor of Computer Science, Utah Valley University; Adjunct Professor of Radiology and Imaging Sciences, University of Utah Valley University; IEEE Fellow;

_Main research focus: Medical Image Reconstruction.

_Recent First-Authored Peer-Reviewed Papers:

__An extended Bayesian-FBP algorithm, .

__Noise-weighted FBP algorithm for uniformly attenuated SPECT projections, .

__Noise weighting with an exponent for transmission CT,

__Does noise weighting matter in CT iterative reconstruction?

__A fast method to emulate an iterative POCS image reconstruction algorithm, .

__Fourier-domain analysis of the iterative Landweber algorithm,

__Estimation of the initial image’s contributions to the iterative Landweber reconstruction,

__Maximum-likelihood expectation-maximization algorithm vs. windowed filtered backprojection algorithm: A case study,

__Filtered backprojection implementation of the immediately-after-backprojection filtering,

__Emission expectation-maximization look-alike algorithms for x-ray CT and other applications,

__Estimation of the optimal iteration number for minimal image discrepancy,

__Image noise covariance can be adjusted by a noise weighted filtered backprojection algorithm,

__Modification of Green’s one-step-late algorithm for attenuated emission data,

__Counter examples for unmatched projector/backprojector in an iterative algorithm,

__Real-time selection of iteration number,

__Extension of emission expectation maximization lookalike algorithms to Bayesian algorithms,

__Sparse-view tomography via displacement function interpolation,

__Time-of-flight PET reconstruction: Two-dimensional case,

__Time-of-flight PET reconstruction: Three-dimensional case,

__Non-iterative image reconstruction from sparse magnetic resonance imaging radial data without priors,

__Poisson-noise weighted filter for time-of-flight positron emission tomography,

__Pre-filter that incorporates the noise model, .

__Projection-domain iteration to estimate unreliable measurements.

__Iterative versus non-iterative image reconstruction methods for sparse MRI,

__Fast filtered back projection algorithm for low-dose computed tomography,

__One-view time-of-flight positron emission tomography.

__Analytic continuation and incomplete data tomography,

__Reducing metal artifacts by restricting negative pixels,

__A deep-network piecewise linear approximation formula,

__A projection-domain iterative algorithm for metal artifact reduction by minimizing the total-variation norm and the negative-pixel energy,

__Iterative analytic extension in tomographic imaging,

__Photon starvation artifact reduction by shift-variant processing,

__Development of a solvability map,

__Directly filtering the sparse-view CT images by BM3D,

__Filtered back-projection reconstruction with non-uniformly under-sampled projections,



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.