E-Book, Englisch, 219 Seiten
Zhang Parallel Robotic Machine Tools
1. Auflage 2009
ISBN: 978-1-4419-1117-9
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 219 Seiten
ISBN: 978-1-4419-1117-9
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Research and development of various parallel mechanism applications in engineering are now being performed more and more actively in every industrial field. Parallel robot based machine tools development is considered a key technology of robot applications in manufacturing industries. The material covered here describes the basic theory, approaches, and algorithms in the field of parallel robot based machine tools. In addition families of new alternative mechanical architectures which can be used for machine tools with parallel architecture are introduced. Given equal importance is the design of mechanism systems such as kinematic analysis, stiffness analysis, kinetostatic modeling, and optimization.
Autoren/Hrsg.
Weitere Infos & Material
1;Parallel Robotic Machine Tools;1
1.1;1 Introduction;11
1.1.1;1.1 The History of Parallel Robots;11
1.1.2;1.2 Introduction of Conventional Machine Tools;15
1.1.3;1.3 Parallel Robot-based Machine Tools;19
1.1.4;1.4 Scope and Organization of this Book;26
1.2;2 Kinematics of Mechanisms;29
1.2.1;2.1 Preamble;29
1.2.2;2.2 Position and Orientation of Rigid Body;29
1.2.2.1;2.2.1 Rotation Matrix;29
1.2.2.2;2.2.2 Euler Angles;32
1.2.3;2.3 Homogeneous Transformation;34
1.2.4;2.4 Denavit–Hartenberg Representation;37
1.2.5;2.5 Jacobian Matrix;38
1.2.6;2.6 Conclusions;41
1.3;3 Architectures of Parallel Robotic Machine;42
1.3.1;3.1 Preamble;42
1.3.2;3.2 Fundamentals of Mechanisms;42
1.3.2.1;3.2.1 Basic Kinematic Elements of Mechanisms;42
1.3.2.1.1;3.2.1.1 Prismatic Joint (P, also called sliders);43
1.3.2.1.2;3.2.1.2 Revolute Joint (R, also called pin joint or hinge joint);43
1.3.2.1.3;3.2.1.3 Hooke Joint (H, also called universal joint, Cardan joint or Hardy-Spicer joint);44
1.3.2.1.4;3.2.1.4 Spherical Joint (S, also called ball-in-socket joint);44
1.3.2.2;3.2.2 Classification of Mechanisms;45
1.3.3;3.3 Graph Representation of Kinematic Structures;47
1.3.4;3.4 Design Criteria;47
1.3.5;3.5 Case Study: Five Degrees of Freedom Parallel Robotic Machine;49
1.3.5.1;3.5.1 Serial Mechanisms;50
1.3.5.2;3.5.2 Parallel Mechanisms;50
1.3.5.3;3.5.3 Hybrid Mechanisms;56
1.3.6;3.6 Redundancy;57
1.3.7;3.7 Conclusions;57
1.4;4 Planar Parallel Robotic Machine Design;59
1.4.1;4.1 Preamble;59
1.4.2;4.2 Planar Two Degrees of Freedom Parallel Robotic Machine;65
1.4.3;4.3 Planar Three Degrees of Freedom Parallel Robotic Machine;69
1.4.4;4.4 Conclusions;76
1.5;5 Spatial Parallel Robotic Machines with Prismatic Actuators;77
1.5.1;5.1 Preamble;77
1.5.2;5.2 Six Degrees of Freedom Parallel Robotic Machine with Prismatic Actuators;78
1.5.2.1;5.2.1 Geometric Modeling and Inverse Kinematics;78
1.5.2.2;5.2.2 Global Velocity Equation;80
1.5.2.3;5.2.3 Stiffness Model;81
1.5.3;5.3 General Kinematic Model of n Degrees of Freedom Parallel Mechanisms with a Passive Constraining Leg and Prismatic Actuators;84
1.5.3.1;5.3.1 Geometric Modeling and Lumped Compliance Model;84
1.5.3.1.1;5.3.1.1 Geometric Modeling;84
1.5.3.1.2;5.3.1.2 Lumped Models for Joint and Link Compliances;88
1.5.3.2;5.3.2 Inverse Kinematics;89
1.5.3.3;5.3.3 Jacobian Matrices;90
1.5.3.3.1;5.3.3.1 Rigid Mechanisms;90
1.5.3.3.2;5.3.3.2 Compliant Model;90
1.5.3.3.3;5.3.3.3 Global Velocity Equation;91
1.5.3.4;5.3.4 Kinetostatic Model for the Mechanism with Rigid Links;92
1.5.3.5;5.3.5 Kinetostatic Model for the Mechanismwith Flexible Links;94
1.5.3.6;5.3.6 Examples;95
1.5.3.6.1;5.3.6.1 5-dof Parallel Mechanism;95
1.5.3.6.2;5.3.6.2 4-dof Parallel Mechanism;96
1.5.3.6.3;5.3.6.3 3-dof Parallel Mechanism;97
1.5.4;5.4 Conclusions;99
1.6;6 Spatial Parallel Robotic Machines with Revolute Actuators;101
1.6.1;6.1 Preamble;101
1.6.2;6.2 Six Degrees of Freedom Parallel Robotic Machine with Revolute Actuators;101
1.6.2.1;6.2.1 Geometric Modeling;101
1.6.2.2;6.2.2 Global Velocity Equation;103
1.6.2.2.1;6.2.2.1 Rigid Model;103
1.6.2.2.2;6.2.2.2 Compliant Model;103
1.6.2.3;6.2.3 Stiffness Model;104
1.6.3;6.3 General Kinematic Model of n Degrees of Freedom Parallel Mechanisms with a Passive Constraining Leg and Revolute Actuators;109
1.6.3.1;6.3.1 Geometric Modeling and Lumped Compliance Model;109
1.6.3.2;6.3.2 Inverse Kinematics;110
1.6.3.2.1;6.3.2.1 Solution for the Case of Mechanisms with Rigid Links;110
1.6.3.2.2;6.3.2.2 Solutions for the Mechanisms with Flexible Links;112
1.6.3.3;6.3.3 Jacobian Matrices;114
1.6.3.3.1;6.3.3.1 Rigid Mechanisms;114
1.6.3.3.2;6.3.3.2 Compliant Model;114
1.6.3.3.3;6.3.3.3 Global Velocity Equations;114
1.6.3.4;6.3.4 Kinetostatic Model for the Mechanism with Rigid Links;117
1.6.3.5;6.3.5 Kinetostatic Model for the Mechanismwith Flexible Links;117
1.6.3.6;6.3.6 Examples;119
1.6.3.6.1;6.3.6.1 5-dof Parallel Mechanism;119
1.6.3.6.2;6.3.6.2 4-dof Parallel Mechanism;119
1.6.3.6.3;6.3.6.3 3-dof Parallel Mechanism;121
1.6.4;6.4 Conclusions;123
1.7;7 Reconfigurable Parallel Kinematic Machine Tools;124
1.7.1;7.1 Preamble;124
1.7.2;7.2 Theoretical Design;125
1.7.3;7.3 Kinematics Model;127
1.7.4;7.4 Case Study;129
1.7.5;7.5 Conclusions;132
1.8;8 Performance Evaluation of Parallel Robotic Machines;133
1.8.1;8.1 Preamble;133
1.8.2;8.2 Global Stiffness Evaluation;133
1.8.2.1;8.2.1 Case Study: A Novel Three Degrees of Freedom Parallel Manipulator;133
1.8.2.2;8.2.2 Kinematic Modeling;135
1.8.2.3;8.2.3 The Global Stiffness Evaluation;137
1.8.3;8.3 Optimal Calibration Method;139
1.8.4;8.4 Conclusions;144
1.9;9 Design Optimization of Parallel Robotic Machines;145
1.9.1;9.1 Preamble;145
1.9.2;9.2 Optimization Objective and Criteria;146
1.9.3;9.3 Basic Theory of Evolutionary Algorithms;147
1.9.4;9.4 Single-Objective Optimization;152
1.9.4.1;9.4.1 Objective of Global Stiffness;152
1.9.4.2;9.4.2 Spatial Six-Degree-of-Freedom Mechanism with Prismatic Actuators;153
1.9.4.3;9.4.3 Spatial Six-Degree-of-Freedom Mechanism with Revolute Actuators;155
1.9.4.4;9.4.4 Spatial Five-Degree-of-Freedom Mechanism with Prismatic Actuators;157
1.9.4.5;9.4.5 Spatial Five-Degree-of-Freedom Mechanism with Revolute Actuators;159
1.9.4.6;9.4.6 Spatial Four-Degree-of-Freedom Mechanism with Prismatic Actuators;162
1.9.4.7;9.4.7 Spatial Four-Degree-of-Freedom Mechanism with Revolute Actuators;164
1.9.4.8;9.4.8 Spatial Three-Degree-of-Freedom Mechanism with Prismatic Actuators;166
1.9.4.9;9.4.9 Spatial Three-Degree-of-Freedom Mechanism with Revolute Actuators;167
1.9.4.10;9.4.10 The Tricept Machine Tool Family;169
1.9.5;9.5 Multiobjective Optimization;172
1.9.5.1;9.5.1 Case Study 1: Three Degrees of Freedom Parallel Manipulator – Two Translations and One Rotation;172
1.9.5.1.1;9.5.1.1 Structure Description;172
1.9.5.1.2;9.5.1.2 Optimization;176
1.9.5.2;9.5.2 Case Study 2: Tripod Compliant ParallelMicromanipulator;185
1.9.5.2.1;9.5.2.1 Structure Description;185
1.9.5.2.2;9.5.2.2 Performance Indices Optimization;186
1.9.6;9.6 Conclusions;191
1.10;10 Integrated Environment for Design and Analysis of Parallel Robotic Machine;192
1.10.1;10.1 Preamble;192
1.10.2;10.2 Case Study;193
1.10.3;10.3 Conclusions;208
1.11;References;209
1.12;Index;217




