Abe | Neural Networks and Fuzzy Systems | Buch | 978-0-7923-9814-1 | sack.de

Buch, Englisch, 258 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1270 g

Abe

Neural Networks and Fuzzy Systems

Theory and Applications
1997
ISBN: 978-0-7923-9814-1
Verlag: Springer US

Theory and Applications

Buch, Englisch, 258 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1270 g

ISBN: 978-0-7923-9814-1
Verlag: Springer US


discusses theories that have proven useful in applying neural networks and fuzzy systems to real world problems. The book includes performance comparison of neural networks and fuzzy systems using data gathered from real systems. Topics covered include the Hopfield network for combinatorial optimization problems, multilayered neural networks for pattern classification and function approximation, fuzzy systems that have the same functions as multilayered networks, and composite systems that have been successfully applied to real world problems. The author also includes representative neural network models such as the Kohonen network and radial basis function network. New fuzzy systems with learning capabilities are also covered.
The advantages and disadvantages of neural networks and fuzzy systems are examined. The performance of these two systems in license plate recognition, a water purification plant, blood cell classification, and other real world problems is compared.
Abe Neural Networks and Fuzzy Systems jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1 Overview of Neural Networks.- 1.1 Brief History of Neural Network Research.- 1.2 Neural Network Models.- 1.3 Expectations for Neural Networks.- 2 The Hopfield Network.- 2.1 Definition of the Continuous Hopfield Network.- 2.2 Stability of Equilibrium Points.- 2.3 Suppression of Spurious States.- 2.4 Solution of the Hopfield Network.- 2.5 Variants of the Continuous Hopfield Network.- 2.6 Performance Evaluation for Traveling Salesman Problems and LSI Module Placement Problems.- Problems.- 3 Multilayered Networks.- 3.1 Network Training.- 3.2 Determination of the Network Structure.- 3.3 Synthesis of the Network.- 3.4 Pattern Classification by the Decision Tree Extracted from the Network.- 3.5 Acceleration of Training and Improvement of Generalization Ability.- Problems.- 4 Other Neural Networks.- 4.1 The Kohonen Network.- 4.2 Variants of Multilayered Networks.- 4.3 ART Models.- Problem.- 5 Overview of Fuzzy Systems.- 5.1 Fuzzy Sets.- 5.2 Fuzzy Rule Inference.- 5.3 Comparison of Neural Networks and Fuzzy Systems.- 5.4 Fuzzy Rule Extraction.- Problems.- 6 Fuzzy Rule Extraction for Pattern Classification from Numerical Data.- 6.1 Approximation by Cluster Centers.- 6.2 Approximation by Hyperboxes.- 6.3 Approximation by Polyhedrons.- 6.4 Performance Evaluation.- Problems.- 7 Fuzzy Rule Extraction for Function Approximation from Numerical Data.- 7.1 Clustering of Input Space.- 7.2 Clustering of Input and Output Spaces.- 7.3 Performance Evaluation of a Water Purification Plant and Time Series Prediction.- Problems.- 8 Composite Systems.- 8.1 Determining the Optimal Structure of the Composite Multilayered Network Classifier.- 8.2 Applications.- References.- Solutions to Problems.- Author Index.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.