Adams / Kalidindi / Fullwood | Microstructure-Sensitive Design for Performance Optimization | Buch | 978-0-12-396989-7 | www.sack.de

Buch, Englisch, 424 Seiten, Format (B × H): 192 mm x 241 mm, Gewicht: 1042 g

Adams / Kalidindi / Fullwood

Microstructure-Sensitive Design for Performance Optimization


Erscheinungsjahr 2012
ISBN: 978-0-12-396989-7
Verlag: Elsevier Science

Buch, Englisch, 424 Seiten, Format (B × H): 192 mm x 241 mm, Gewicht: 1042 g

ISBN: 978-0-12-396989-7
Verlag: Elsevier Science


The accelerating rate at which new materials are appearing, and transforming the engineering world, only serves to emphasize the vast potential for novel material structure and related performance. Microstructure Sensitive Design for Performance Optimization (MSDPO) embodies a new methodology for systematic design of material microstructure to meet the requirements of design in optimal ways. Intended for materials engineers and researchers in industry, government and academia as well as upper level undergraduate and graduate students studying material science and engineering, MSDPO provides a novel mathematical framework that facilitates a rigorous consideration of the material microstructure as a continuous design variable in the field of engineering design.

Adams / Kalidindi / Fullwood Microstructure-Sensitive Design for Performance Optimization jetzt bestellen!

Zielgruppe


Materials engineers and researchers across academia, government and industry who are working in the area of new materials design; graduate students in materials science and engineering

Weitere Infos & Material


Chapter 1. Introduction

Chapter 2. Tensors and Rotations

Chapter 3. Generalized Fourier Series

Chapter 4. Description of the Microstructure

Chapter 5. Symmetry in Microstructure Representation

Chapter 6. Continuum Theories

Chapter 7. Homogenization Theories

Chapter 8. The Microstructure Hull

Chapter 9. The Property Closure

Chapter 10. A Design Process

Chapter 11. Higher Order Microstructure Representation

Chapter 12. Stereology

Chapter 13. Higher Order Homogenization

Chapter 14. The 2nd-Order Property Closure and Design Optimization

Chapter 15. Microstructure Evolution by Processing

Appendix A. Symmetry Point Operators

Appendix B. Spherical Harmonic Functions and Tables

Appendix C. Orientation Imaging Microscopy

Bibliography

Notation

Index


Kalidindi, Surya R
Surya R. Kalidindi earned a B.Tech. in Civil Engineering from the Indian Institute of Technology, Madras, an M.S. in Civil Engineering from Case Western Reserve University, and a Ph.D. in Mechanical Engineering from the Massachusetts Institute of Technology. After his graduation from MIT in 1992, Surya joined the Department of Materials Science and Engineering at Drexel University as an Assistant Professor, where he served as the Department Head during 2000-2008. In 2013, Surya accepted a new position as a Professor of Mechanical Engineering in the George W. Woodruff School at Georgia Institute of Technology, with joint appointments in the School of Computational Science and Engineering and in the School of Materials Science and Engineering. Surya's research efforts over the past two decades have made seminal contributions to the fields of crystal plasticity, microstructure design, spherical nanoindentation, and materials informatics. His work has already produced about 200 journal articles, four book chapters, and a new book on Microstructure Sensitive Design. His work is well cited by peer researchers as reflected by an h-index of 52 and current citation rate of about 1000 citations/year (Google Scholar). He has recently been awarded the Alexander von Humboldt award in recognition of his lifetime achievements in research. He has been elected a Fellow of ASME, ASM International, TMS, and Alpha Sigma Mu.

Adams, Brent L
Brent L. Adams is Dusenberry Professor of Mechanical Engineering at Brigham Young University. From 1976-80 he was Senior Research Engineer for Babcock and Wilcox Company. He has been a professor of materials science at the University of Florida and Carnegie Mellon University, and a professor of mechanical engineering at Yale University and Brigham Young University. He was recipient of a National Science Foundation Presidential Young Investigator Award (1985-1990). Professor Adams directed the team of researchers that developed the orientation imaging microscope, which is now used by over 400 laboratories some 30 countries of the world to advance the development of materials. He is the author of 170 papers and five edited proceedings.

Fullwood, David T
Dr. David Fullwood is a member of the Materials group in the Mechanical Engineering Department at Brigham Young University. Following his PhD in mathematics he spent 12 years working for the nuclear industry in the UK. As Head of R&D and Head of Mechanical Engineering he developed high-speed energy storage flywheels based on novel composites for two spin-off companies. The result was the most high-tech flywheel available, with applications on the NY Metro, a Fuji wind farm and other areas requiring energy smoothing. Dr Fullwood returned to academia in 2004, with a brief spell at Drexel University followed by his current position at BYU. He now focuses on composites / nano-composites, microscopy and computational methods in materials science.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.