Make Your Machine Learning and Deep Learning Models More Efficient
Buch, Englisch, 166 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 295 g
ISBN: 978-1-4842-6578-9
Verlag: Apress
Dive into hyperparameter tuning of machine learning models and focus on what hyperparameters are and how they work. This book discusses different techniques of hyperparameters tuning, from the basics to advanced methods.
This is a step-by-step guide to hyperparameter optimization, starting with what hyperparameters are and how they affect different aspects of machine learning models. It then goes through some basic (brute force) algorithms of hyperparameter optimization. Further, the author addresses the problem of time and memory constraints, using distributed optimization methods. Next you’ll discuss Bayesian optimization for hyperparameter search, which learns from its previous history.
The book discusses different frameworks, such as Hyperopt and Optuna, which implements sequential model-based global optimization (SMBO) algorithms. During these discussions, you’ll focus on different aspects such as creation of search spaces and distributed optimization of these libraries.
Hyperparameter Optimization in Machine Learning creates an understanding of how these algorithms work and how you can use them in real-life data science problems. The final chapter summaries the role of hyperparameter optimization in automated machine learning and ends with a tutorial to create your own AutoML script.
Hyperparameter optimization is tedious task, so sit back and let these algorithms do your work.
What You Will Learn
- Discover how changes in hyperparameters affect the model’s performance.
- Apply different hyperparameter tuning algorithms to data science problems
- Work with Bayesian optimization methods to create efficient machine learning and deep learning models
- Distribute hyperparameter optimization using a cluster of machines
- Approach automated machine learning using hyperparameter optimization
Who This Book Is For
Professionals and students working with machine learning.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Programmier- und Skriptsprachen
- Mathematik | Informatik EDV | Informatik Betriebssysteme Linux Betriebssysteme, Open Source Betriebssysteme
Weitere Infos & Material
- Chapter 1: Hyperparameters
Chapter 2: Brute Force Hyperparameter TuningChapter Goal: To understand the commonly used classical hyperparameter tuningmethods and implement them from scratch, as well as use the Scikit-Learn library to do so.Sub - Topics:1. Hyperparameter tuning2. Exhaustive hyperparameter tuning methods3. Grid search4. Random search5. Evaluation of models while tuning hyperparameters.
Chapter 3: Distributed Hyperparameter OptimizationChapter Goal: To handle bigger datasets and a large number of hyperparameterwith continuous search spaces using distributed algorithms and distributedhyperparameter optimization methods, using Dask Library.Sub - Topics:1. Why we need distributed tuning2. Dask dataframes3. IncrementalSearchCV
Chapter 4: Sequential Model-Based Global Optimization and Its HierarchicalMethodsChapter Goal: A detailed theoretical chapter about SMBO Methods, which usesBayesian techniques to optimize hyperparameter. They learn from their previous iterationunlike Grid Search or Random Search.Sub - Topics:1. Sequential Model-Based Global Optimization2. Gaussian process approach3. Tree-structured Parzen Estimator(TPE)
Chapter 5: Using HyperOptChapter Goal: A Chapter focusing on a library hyperopt that implements thealgorithm TPE discussed in the last chapter. Goal to use the TPE algorithm to optimizehyperparameter and make the reader aware of how it is better than other methods.MongoDB will be used to parallelize the evaluations. Discuss Hyperopt Scikit-Learn and Hyperas with examples.1. Defining an objective function.2. Creating search space.3. Running HyperOpt.4. Using MongoDB Trials to make parallel evaluations.5. HyperOpt SkLearn6. Hyperas
Chapter 6: Hyperparameter Generating Condition Generative Adversarial NeuralNetworks(HG-cGANs) and So Forth.Chapter Goal: It is based on a hypothesis of how, based on certain properties of dataset, one can train neural networks on metadata and generate hyperparameters for new datasets. It also summarizes how these newer methods of Hyperparameter Tuning can help AI to develop further.Sub - Topics:1. Generating Metadata2. Training HG-cGANs3. AI and hyperparameter tuning




