Agrawal | Hyperparameter Optimization in Machine Learning | Buch | 978-1-4842-6578-9 | www.sack.de

Buch, Englisch, 166 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 295 g

Agrawal

Hyperparameter Optimization in Machine Learning

Make Your Machine Learning and Deep Learning Models More Efficient
1. Auflage 2020
ISBN: 978-1-4842-6578-9
Verlag: Apress

Make Your Machine Learning and Deep Learning Models More Efficient

Buch, Englisch, 166 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 295 g

ISBN: 978-1-4842-6578-9
Verlag: Apress


Dive into hyperparameter tuning of machine learning models and focus on what hyperparameters are and how they work. This book discusses different techniques of hyperparameters tuning, from the basics to advanced methods.

This is a step-by-step guide to hyperparameter optimization, starting with what hyperparameters are and how they affect different aspects of machine learning models. It then goes through some basic (brute force) algorithms of hyperparameter optimization. Further, the author addresses the problem of time and memory constraints, using distributed optimization methods. Next you’ll discuss Bayesian optimization for hyperparameter search, which learns from its previous history.

The book discusses different frameworks, such as Hyperopt and Optuna, which implements sequential model-based global optimization (SMBO) algorithms. During these discussions, you’ll focus on different aspects such as creation of search spaces and distributed optimization of these libraries.

Hyperparameter Optimization in Machine Learning creates an understanding of how these algorithms work and how you can use them in real-life data science problems. The final chapter summaries the role of hyperparameter optimization in automated machine learning and ends with a tutorial to create your own AutoML script.

Hyperparameter optimization is tedious task, so sit back and let these algorithms do your work.

What You Will Learn

- Discover how changes in hyperparameters affect the model’s performance.
- Apply different hyperparameter tuning algorithms to data science problems
- Work with Bayesian optimization methods to create efficient machine learning and deep learning models
- Distribute hyperparameter optimization using a cluster of machines
- Approach automated machine learning using hyperparameter optimization

Who This Book Is For

Professionals and students working with machine learning.

Agrawal Hyperparameter Optimization in Machine Learning jetzt bestellen!

Zielgruppe


Professional/practitioner


Autoren/Hrsg.


Weitere Infos & Material


  • Chapter 1: Hyperparameters
Chapter Goal: To introduce what hyperparameters are, how they can affect themodel training. Also gives an intuition of how hyperparameter affects general machinelearning algorithms, and what value should we choose as per the training dataset.Sub - Topics1. Introduction to hyperparameters.2. Why do we need to tune hyperparameters3. Specific algorithms and their hyperparameters4. Cheatsheet for deciding Hyperparameter of some specific Algorithms.
Chapter 2: Brute Force Hyperparameter TuningChapter Goal: To understand the commonly used classical hyperparameter tuningmethods and implement them from scratch, as well as use the Scikit-Learn library to do so.Sub - Topics:1. Hyperparameter tuning2. Exhaustive hyperparameter tuning methods3. Grid search4. Random search5. Evaluation of models while tuning hyperparameters.
Chapter 3: Distributed Hyperparameter OptimizationChapter Goal: To handle bigger datasets and a large number of hyperparameterwith continuous search spaces using distributed algorithms and distributedhyperparameter optimization methods, using Dask Library.Sub - Topics:1. Why we need distributed tuning2. Dask dataframes3. IncrementalSearchCV
Chapter 4: Sequential Model-Based Global Optimization and Its HierarchicalMethodsChapter Goal: A detailed theoretical chapter about SMBO Methods, which usesBayesian techniques to optimize hyperparameter. They learn from their previous iterationunlike Grid Search or Random Search.Sub - Topics:1. Sequential Model-Based Global Optimization2. Gaussian process approach3. Tree-structured Parzen Estimator(TPE)
Chapter 5: Using HyperOptChapter Goal: A Chapter focusing on a library hyperopt that implements thealgorithm TPE discussed in the last chapter. Goal to use the TPE algorithm to optimizehyperparameter and make the reader aware of how it is better than other methods.MongoDB will be used to parallelize the evaluations. Discuss Hyperopt Scikit-Learn and Hyperas with examples.1. Defining an objective function.2. Creating search space.3. Running HyperOpt.4. Using MongoDB Trials to make parallel evaluations.5. HyperOpt SkLearn6. Hyperas
Chapter 6: Hyperparameter Generating Condition Generative Adversarial NeuralNetworks(HG-cGANs) and So Forth.Chapter Goal: It is based on a hypothesis of how, based on certain properties of dataset, one can train neural networks on metadata and generate hyperparameters for new datasets. It also summarizes how these newer methods of Hyperparameter Tuning can help AI to develop further.Sub - Topics:1. Generating Metadata2. Training HG-cGANs3. AI and hyperparameter tuning


Tanay is a deep learning engineer and researcher, who graduated in 2019 in Bachelor of Technology from SMVDU, J&K. He is currently working at Curl Hg on SARA, an OCR platform. He is also advisor to Witooth Dental Services and Technologies. He started his career at MateLabs working on an AutoML Platform, Mateverse. He has worked extensively on hyperparameter optimization. He has also delivered talks on hyperparameter optimization at conferences including PyData, Delhi and PyCon, India. 



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.