Aho | Foundational and Applied Statistics for Biologists Using R | E-Book | www.sack.de
E-Book

E-Book, Englisch, 618 Seiten

Aho Foundational and Applied Statistics for Biologists Using R


1. Auflage 2013
ISBN: 978-1-4398-7339-7
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, 618 Seiten

ISBN: 978-1-4398-7339-7
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Full of biological applications, exercises, and interactive graphical examples, Foundational and Applied Statistics for Biologists Using R presents comprehensive coverage of both modern analytical methods and statistical foundations. The author harnesses the inherent properties of the R environment to enable students to examine the code of complicated procedures step by step and thus better understand the process of obtaining analysis results. The graphical capabilities of R are used to provide interactive demonstrations of simple to complex statistical concepts.

Assuming only familiarity with algebra and general calculus, the text offers a flexible structure for both introductory and graduate-level biostatistics courses. The first seven chapters address fundamental topics in statistics, such as the philosophy of science, probability, estimation, hypothesis testing, sampling, and experimental design. The remaining four chapters focus on applications involving correlation, regression, ANOVA, and tabular analyses.

Unlike classic biometric texts, this book provides students with an understanding of the underlying statistics involved in the analysis of biological applications. In particular, it shows how a solid statistical foundation leads to the correct application of procedures, a clear understanding of analyses, and valid inferences concerning biological phenomena.

Web Resource
An R package (asbio) developed by the author is available from CRAN. Accessible to those without prior command-line interface experience, this companion library contains hundreds of functions for statistical pedagogy and biological research. The author’s website also includes an overview of R for novices.

Aho Foundational and Applied Statistics for Biologists Using R jetzt bestellen!

Zielgruppe


Advanced undergraduate and graduate students in biology.


Autoren/Hrsg.


Weitere Infos & Material


FOUNDATIONS
Philosophical and Historical Foundations
Introduction
Nature of Science
Scientific Principles
Scientific Method
Scientific Hypotheses
Logic
Variability and Uncertainty in Investigations
Science and Statistics
Statistics and Biology

Introduction to Probability
Introduction: Models for Random Variables
Classical Probability
Conditional Probability
Odds
Combinatorial Analysis
Bayes Rule

Probability Density Functions
Introduction
Introductory Examples of pdfs
Other Important Distributions
Which pdf to Use?
Reference Tables

Parameters and Statistics
Introduction
Parameters
Statistics
OLS and ML Estimators
Linear Transformations
Bayesian Applications

Interval Estimation: Sampling Distributions, Resampling Distributions, and Simulation Distributions
Introduction
Sampling Distributions
Confidence Intervals
Resampling Distributions
Bayesian Applications: Simulation Distributions

Hypothesis Testing
Introduction
Parametric Frequentist Null Hypothesis Testing
Type I and Type II Errors
Power
Criticisms of Frequentist Null Hypothesis Testing
Alternatives to Parametric Null Hypothesis Testing
Alternatives to Null Hypothesis Testing

Sampling Design and Experimental Design
Introduction
Some Terminology
The Question Is: What Is the Question?
Two Important Tenets: Randomization and Replication
Sampling Design
Experimental Design

APPLICATIONS
Correlation
Introduction
Pearson’s Correlation
Robust Correlation
Comparisons of Correlation Procedures

Regression
Introduction
Linear Regression Model
General Linear Models
Simple Linear Regression
Multiple Regression
Fitted and Predicted Values
Confidence and Prediction Intervals
Coefficient of Determination and Important Variants
Power, Sample Size, and Effect Size
Assumptions and Diagnostics for Linear Regression
Transformation in the Context of Linear Models
Fixing the Y-Intercept
Weighted Least Squares
Polynomial Regression
Comparing Model Slopes
Likelihood and General Linear Models
Model Selection
Robust Regression
Model II Regression (X Not Fixed)
Generalized Linear Models
Nonlinear Models
Smoother Approaches to Association and Regression
Bayesian Approaches to Regression

ANOVA
Introduction
One-Way ANOVA
Inferences for Factor Levels
ANOVA as a General Linear Model
Random Effects
Power, Sample Size, and Effect Size
ANOVA Diagnostics and Assumptions
Two-Way Factorial Design
Randomized Block Design
Nested Design
Split-Plot Design
Repeated Measures Design
ANCOVA
Unbalanced Designs
Robust ANOVA
Bayesian Approaches to ANOVA

Tabular Analyses
Introduction
Probability Distributions for Tabular Analyses
One-Way Formats
Confidence Intervals for p
Contingency Tables
Two-Way Tables
Ordinal Variables
Power, Sample Size, and Effect Size
Three-Way Tables
Generalized Linear Models

Appendix

References

Index

A Summary and Exercises appear at the end of each chapter.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.